Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  least squares method
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

On least squares estimation of Fourier coefficients and of the regression function

100%
EN
The problem of nonparametric function fitting with the observation model $y_i = f(x_i) + η_i$, i=1,...,n, is considered, where $η_i$ are independent random variables with zero mean value and finite variance, and $x_i \in [a,b] \subset \R^1$, i=1,...,n, form a random sample from a distribution with density $ϱ \in L^1[a,b]$ and are independent of the errors $η_i$, i=1,...,n. The asymptotic properties of the estimator $\widehat{f}_{N(n)}(x) = \sum_{k=1}^{N(n)} \widehat{c}_ke_k(x)$ for $f \in L^2[a,b]$ and $\widehat{c}^{N(n)}=( \widehat{c}_1,..., \widehat{c}_{N(n)})^T$ obtained by the least squares method as well as the limits in probability of the estimators $\widehat{c}_k$, k=1,...,N, for fixed N, are studied in the case when the functions $e_k$, k=1,2,..., forming a complete orthonormal system in $L^2\[a,b\]$ are analytic.
2
Content available remote

Convergence rates of orthogonal series regression estimators

100%
EN
General conditions for convergence rates of nonparametric orthogonal series estimators of the regression function f(x)=E(Y | X = x) are considered. The estimators are obtained by the least squares method on the basis of a random observation sample (Y_i,X_i), i=1,...,n, where $X_i ∈ A ⊂ ℝ^d$ have marginal distribution with density $ϱ ∈ L^1(A)$ and Var( Y | X = x) is bounded on A. Convergence rates of the errors $E_X(f(X)-\widehat f_N(X))^2$ and $\Vert f-\widehat f_N\Vert_∞$ for the estimator $\widehat f_N(x) = \sum_{k=1}^N\widehat c_ke_k(x)$, constructed using an orthonormal system $e_k$, k=1,2,..., in $L^2(A)$ are obtained.
3
Content available remote

Consistency of trigonometric and polynomial regression estimators

100%
EN
The problem of nonparametric regression function estimation is considered using the complete orthonormal system of trigonometric functions or Legendre polynomials $e_k$, k=0,1,..., for the observation model $y_i = f(x_i) + η_i $, i=1,...,n, where the $η_i$ are independent random variables with zero mean value and finite variance, and the observation points $x_i\in[a,b]$, i=1,...,n, form a random sample from a distribution with density $ϱ\in L^1[a,b]$. Sufficient and necessary conditions are obtained for consistency in the sense of the errors $\Vert f-\widehat f_N\Vert, \vert f(x)-\widehatf_N(x)\vert$, $x\in[a,b]$, and $E\Vert f-\widehatf_N\Vert^2$ of the projection estimator $\widehat f_N(x) = \sum_{k=0}^N\widehat{c}_ke_k(x)$ for $\widehat{c}_0,\widehat{c}_1,\ldots,\widehat{c}_N$ determined by the least squares method and $f\in L^2[a,b]$.
4
Content available remote

Least-squares trigonometric regression estimation

88%
EN
The problem of nonparametric function fitting using the complete orthogonal system of trigonometric functions $e_k$, k=0,1,2,..., for the observation model $y_i = f(x_{in}) + η_i$, i=1,...,n, is considered, where $η_i$ are uncorrelated random variables with zero mean value and finite variance, and the observation points $x_{in} ∈ [0,2π]$, i=1,...,n, are equidistant. Conditions for convergence of the mean-square prediction error $(1/n)\sum_{i=1}^n E(f(x_{in})-\widehat f_{N(n)}(x_{in}))^2$, the integrated mean-square error $E ‖f-\widehat f_{N(n)}‖^2$ and the pointwise mean-square error $E(f(x)-\widehatf_{N(n)}(x))^2$ of the estimator $\widehat f_{N(n)}(x) = \sum_{k=0}^{N(n)} \widehat c_k e_k(x)$ for f ∈ C[0,2π] and $\widehat c_0,\widehat c_1,...,\widehat c_{N(n)}$ obtained by the least squares method are studied.
EN
The paper presents two methods used for the identification of Continuous-time Linear Time Invariant (CLTI) systems. In both methods the idea of using modulating functions and a convolution filter is exploited. It enables the proper transformation of a differential equation to an algebraic equation with the same parameters. Possible different normalizations of the model are strictly connected with different parameter constraints which have to be assumed for the nontrivial solution of the optimal identification problem. Different parameter constraints result in different quality of identification. A thorough discussion on the role of parameter constraints in the optimality of system identification is included. For time continuous systems, the Equation Error Method (EEM) is compared with the continuous version of the Output Error Method (OEM), which appears as a special sub-case of the EEM.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.