Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  harmonic functions
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

The boundary Harnack principle for the fractional Laplacian

100%
EN
We study nonnegative functions which are harmonic on a Lipschitz domain with respect to symmetric stable processes. We prove that if two such functions vanish continuously outside the domain near a part of its boundary, then their ratio is bounded near this part of the boundary.
2
Content available remote

Harmonic functions and Hardy spaces on trees with boundaries

100%
EN
We study series expansions for harmonic functions analogous to Hartogs series for holomorphic functions. We apply them to study conjugate harmonic functions and the space of square integrable harmonic functions.
4
Content available remote

Harmonic functions in a cylinder with normal derivatives vanishing on the boundary

100%
EN
A harmonic function in a cylinder with the normal derivative vanishing on the boundary is expanded into an infinite sum of certain fundamental harmonic functions. The growth condition under which it is reduced to a finite sum of them is given.
EN
We study harmonic functions for the Laplace-𝔹eltrami operator on the real hyperbolic space $𝔹_n$. We obtain necessary and sufficient conditions for these functions and their normal derivatives to have a boundary distribution. In doing so, we consider different behaviors of hyperbolic harmonic functions according to the parity of the dimension of the hyperbolic ball $𝔹_n$. We then study the Hardy spaces $H^p(𝔹_n)$, 0
EN
We prove that, if μ>0, then there exists a linear manifold M of harmonic functions in $ℝ^N$ which is dense in the space of all harmonic functions in $ℝ^N$ and lim_{{‖x‖→∞} {x ∈ S}} ‖x‖^{μ}D^{α}v(x) = 0 for every v ∈ M and multi-index α, where S denotes any hyperplane strip. Moreover, every nonnull function in M is universal. In particular, if μ ≥ N+1, then every function v ∈ M satisfies ∫_H vdλ =0 for every (N-1)-dimensional hyperplane H, where λ denotes the (N-1)-dimensional Lebesgue measure. On the other hand, we prove that there exists a linear manifold M of harmonic functions in the unit ball 𝔹 of $ℝ^N$, which is dense in the space of all harmonic functions and each function in M has zero nontangential limit at every point of the boundary of 𝔹.
7
41%
EN
CONTENTS Introduction..........................................................................................................................................................................5 Preliminaries. Complex harmonic functions..........................................................................................................................7 I. Spectral values and eigenvalues of a Jordan curve........................................................................................................19  1.1. On a boundary integral..............................................................................................................................................20  1.2. The generalized Cauchy singular integral operator $C_𝕍$.......................................................................................23  1.3. The Hilbert transformation $T_Ω$.............................................................................................................................28  1.4. The boundary space Ḣ²(∂Ω)......................................................................................................................................31  1.5. The generalized Neumann-Poincaré operator $N_𝕍$...............................................................................................36 II. Quasisymmetric automorphisms of the unit circle...........................................................................................................41  2.1. The Douady-Earle extension $E_γ$..........................................................................................................................42  2.2. On an approximation of the Hersch-Pfluger distortion function $Φ_K$......................................................................46  2.3. On the maximal dilatation of the Douady-Earle extension..........................................................................................48  2.4. The Hilbert space H...................................................................................................................................................54  2.5. The linear operator $B_γ$.........................................................................................................................................60 III. The generalized harmonic conjugation operator............................................................................................................64  3.1. The generalized harmonic conjugation operator $A_γ$.............................................................................................64  3.2. Spectral values and eigenvalues of a quasisymmetric automorphism of the unit circle..............................................73  3.3. The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle..............................................80  3.4. Limiting properties of spectral values and eigenvalues of a quasisymmetric automorphism of the unit circle............84 IV. Spectral values of a quasicircle.....................................................................................................................................90  4.1. Characterizations of the boundary space Ḣ²(∂Ω).......................................................................................................91  4.2. Spaces symmetric with respect to a Jordan curve.....................................................................................................93  4.3. Plemelj's formula for a quasicircle..............................................................................................................................96  4.4. The main spectral theorem for quasicircles.............................................................................................................103  4.5. Spectral values and eigenvalues of a quasicircle....................................................................................................108 Appendix. The inner completion of pseudo-normed spaces............................................................................................114 References......................................................................................................................................................................117 List of symbols.................................................................................................................................................................122 Index................................................................................................................................................................................124
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.