Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Littlewood-Paley function
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Boundedness of Marcinkiewicz functions.

100%
EN
The $L^p$ boundedness(1 < p < ∞) of Littlewood-Paley's g-function, Lusin's S function, Littlewood-Paley's $g*_λ$-functions, and the Marcinkiewicz function is well known. In a sense, one can regard the Marcinkiewicz function as a variant of Littlewood-Paley's g-function. In this note, we treat counterparts $μ_{S}^{ϱ}$ and $μ_{λ}^{*,ϱ}$ to S and $g*_λ$. The definition of $μ_{S}^{ϱ}(f)$ is as follows: $μ_{S}^{ϱ}(f)(x) = (ʃ_{|y-x| < t}| 1/t^{ϱ} ʃ_{|z|≤ t} Ω(z)/(|z|^{n-ϱ}) f(y-z) dz|^2 (dydt)/(t^{n+1}) )^{1/2}$, where Ω(x) is a homogeneous function of degree 0 and Lipschitz continuous of order β (0 < β ≤ 1) on the unit sphere $S^{n-1}$, and $ʃ_{S^{n-1}} Ω(x')dσ(x') = 0$. We show that if σ = Reϱ > 0, then $μ_{S}^{ϱ}$ is $L^p$ bounded for max(1,2n/(n+2σ) < p < ∞, and for 0 < ϱ ≤ n/2 and 1 ≤ p ≤ 2n/(n+2ϱ), then $L^p$ boundedness does not hold in general, in contrast to the case of the S function. Similar results hold for $μ_{λ}^{*,ϱ}$. Their boundedness in the Campanato space $ε^{α,p}$ is also considered.
EN
We give characterizations of weighted Besov-Lipschitz and Triebel-Lizorkin spaces with $A_∞$ weights via a smooth kernel which satisfies "minimal" moment and Tauberian conditions. The results are stated in terms of the mixed norm of a certain maximal function of a distribution in these weighted spaces.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.