Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Inertia
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Inertias and ranks of some Hermitian matrix functions with applications

100%
EN
Let S be a given set consisting of some Hermitian matrices with the same size. We say that a matrix A ∈ S is maximal if A − W is positive semidefinite for every matrix W ∈ S. In this paper, we consider the maximal and minimal inertias and ranks of the Hermitian matrix function f(X,Y) = P − QXQ* − TYT*, where * means the conjugate and transpose of a matrix, P = P*, Q, T are known matrices and for X and Y Hermitian solutions to the consistent matrix equations AX =B and YC = D respectively. As applications, we derive the necessary and sufficient conditions for the existence of maximal matrices of $$H = \{ f(X,Y) = P - QXQ* - TYT* : AX = B,YC = D,X = X*, Y = Y*\} .$$ The corresponding expressions of the maximal matrices of H are presented when the existence conditions are met. In this case, we further prove the matrix function f(X,Y)is invariant under changing the pair (X,Y). Moreover, we establish necessary and sufficient conditions for the system of matrix equations $$AX = B, YC = D, QXQ* + TYT* = P$$ to have a Hermitian solution and the system of matrix equations $$AX = C, BXB* = D$$ to have a bisymmetric solution. The explicit expressions of such solutions to the systems mentioned above are also provided. In addition, we discuss the range of inertias of the matrix functions P ± QXQ* ± TYT* where X and Y are a nonnegative definite pair of solutions to some consistent matrix equations. The findings of this pape extend some known results in the literature.
2
Content available remote

Matrix rank and inertia formulas in the analysis of general linear models

84%
Open Mathematics
|
2017
|
tom 15
|
nr 1
126-150
EN
Matrix mathematics provides a powerful tool set for addressing statistical problems, in particular, the theory of matrix ranks and inertias has been developed as effective methodology of simplifying various complicated matrix expressions, and establishing equalities and inequalities occurred in statistical analysis. This paper describes how to establish exact formulas for calculating ranks and inertias of covariances of predictors and estimators of parameter spaces in general linear models (GLMs), and how to use the formulas in statistical analysis of GLMs. We first derive analytical expressions of best linear unbiased predictors/best linear unbiased estimators (BLUPs/BLUEs) of all unknown parameters in the model by solving a constrained quadratic matrix-valued function optimization problem, and present some well-known results on ordinary least-squares predictors/ordinary least-squares estimators (OLSPs/OLSEs). We then establish some fundamental rank and inertia formulas for covariance matrices related to BLUPs/BLUEs and OLSPs/OLSEs, and use the formulas to characterize a variety of equalities and inequalities for covariance matrices of BLUPs/BLUEs and OLSPs/OLSEs. As applications, we use these equalities and inequalities in the comparison of the covariance matrices of BLUPs/BLUEs and OLSPs/OLSEs. The work on the formulations of BLUPs/BLUEs and OLSPs/OLSEs, and their covariance matrices under GLMs provides direct access, as a standard example, to a very simple algebraic treatment of predictors and estimators in linear regression analysis, which leads a deep insight into the linear nature of GLMs and gives an efficient way of summarizing the results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.