Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

Ograniczanie wyników

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

A general integral

100%
EN
We define an integral, the distributional integral of functions of one real variable, that is more general than the Lebesgue and the Denjoy-Perron-Henstock-Kurzweil integrals, and which allows the integration of functions with distributional values everywhere or nearly everywhere. Our integral has the property that if f is locally distributionally integrable over the real line and ψ ∈ 𝓓(ℝ) is a test function, then fψ is distributionally integrable, and the formula $⟨𝖿,ψ⟩ =(𝔡𝔦𝔰𝔱) ∫_{-∞}^{∞} f(x)ψ(x)dx$, defines a distribution 𝖿 ∈ 𝓓'(ℝ) that has distributional point values almost everywhere and actually 𝖿(x) = f(x) almost everywhere. The indefinite distributional integral $F(x) =(𝔡𝔦𝔰𝔱) ∫_{a}^{x} f(t)dt$ corresponds to a distribution with point values everywhere and whose distributional derivative has point values almost everywhere equal to f(x). The distributional integral is more general than the standard integrals, but it still has many of the useful properties of those standard ones, including integration by parts formulas, substitution formulas, even for infinite intervals (in the Cesàro sense), mean value theorems, and convergence theorems. The distributional integral satisfies a version of Hake's theorem. Unlike general distributions, locally distributionally integrable functions can be restricted to closed sets and can be multiplied by power functions with real positive exponents.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.