Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
We consider the Volterra integral operator $T:L^{p}(ℝ^{+}) → L^{p}(ℝ^{+})$ defined by $(Tf)(x) = v(x)ʃ_{0}^{x} u(t)f(t)dt$. Under suitable conditions on u and v, upper and lower estimates for the approximation numbers $a_n(T)$ of T are established when 1 < p < ∞. When p = 2 these yield $lim_{n→∞} na_{n}(T) = π^{-1} ʃ_{0}^{∞} |u(t)v(t)|dt$. We also provide upper and lower estimates for the $ℓ^{α}$ and weak $ℓ^{α}$ norms of (a_{n}(T)) when 1 < α < ∞.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.