Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

Ograniczanie wyników

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

A characterization of some additive arithmetical functions, III

100%
Acta Arithmetica
|
1999
|
tom 91
|
nr 3
229-232
EN
I. Introduction. In 1946, P. Erdős [2] proved that if a real-valued additive arithmetical function f satisfies the condition: f(n+1) - f(n) → 0, n → ∞, then there exists a constant C such that f(n) = C log n for all n in ℕ*. Later, I. Kátai [3,4] was led to conjecture that it was possible to determine additive arithmetical functions f and g satisfying the condition: there exist a real number l, a, c in ℕ*, and integers b, d such that f(an+b) - g(cn+d) → l, n → ∞. This problem has been treated essentially by analytic methods ([1], [7]). In this article, we shall provide, in an elementary way, a characterization of real-valued additive arithmetical functions f and g satisfying the condition: (H) there exist a and b in ℕ* with (a,b) = 1 and a finite set Ω such that (1) lim_{n→∞} min_{ω∈Ω} |f(an+b) - g(n) - ω| = 0.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.