Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

Ograniczanie wyników

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Sur la nature des fonctions à carré sommable et des ensembles mesurables

100%
FR
Théorème: Quelle que soit une fonction f(x) à carré sommable qu'on suppose définie aux points de l'intervalle (0,1) et nulle ailleurs, l'intégrale q(x) = ∫_0^1 (f(x+α)-f(x-α))/α dα considérée comme lim_{ϵ=0}∫_{ϵ}^1, est finie presque partout dans (0,1) et représente une fonction de x à carré sommable. Le but de cette note est de trouver une limite supérieure pour l'intégrale ∫_0^1[q(x)]^2dx, et de donner une démonstration du théoreme cité, en se servant d'une méthode des variables réelles qui permet de voir quelles sont les propriétés des fonctions et des ensembles desquelles résulte le théorème en question.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.