Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In [1], Brousek characterizes all triples of connected graphs, G₁,G₂,G₃, with $G_i = K_{1,3}$ for some i = 1,2, or 3, such that all G₁G₂ G₃-free graphs contain a hamiltonian cycle. In [8], Faudree, Gould, Jacobson and Lesniak consider the problem of finding triples of graphs G₁,G₂,G₃, none of which is a $K_{1,s}$, s ≥ 3 such that G₁G₂G₃-free graphs of sufficiently large order contain a hamiltonian cycle. In [6], a characterization was given of all triples G₁,G₂,G₃ with none being $K_{1,3}$, such that all G₁G₂G₃-free graphs are hamiltonian. This result, together with the triples given by Brousek, completely characterize the forbidden triples G₁,G₂,G₃ such that all G₁G₂G₃-free graphs are hamiltonian. In this paper we consider the question of which triples (including $K_{1,s}$, s ≥ 3) of forbidden subgraphs potentially imply all sufficiently large graphs are hamiltonian. For s ≥ 4 we characterize these families.
2
100%
EN
In [2], Brousek characterizes all triples of graphs, G₁, G₂, G₃, with $G_i = K_{1,3}$ for some i = 1, 2, or 3, such that all G₁G₂G₃-free graphs contain a hamiltonian cycle. In [6], Faudree, Gould, Jacobson and Lesniak consider the problem of finding triples of graphs G₁, G₂, G₃, none of which is a $K_{1,s}$, s ≥ 3 such that G₁, G₂, G₃-free graphs of sufficiently large order contain a hamiltonian cycle. In this paper, a characterization will be given of all triples G₁, G₂, G₃ with none being $K_{1,3}$, such that all G₁G₂G₃-free graphs are hamiltonian. This result, together with the triples given by Brousek, completely characterize the forbidden triples G₁, G₂, G₃ such that all G₁G₂G₃-free graphs are hamiltonian.
3
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Chvátal-Erdös type theorems

88%
EN
The Chvátal-Erdös theorems imply that if G is a graph of order n ≥ 3 with κ(G) ≥ α(G), then G is hamiltonian, and if κ(G) > α(G), then G is hamiltonian-connected. We generalize these results by replacing the connectivity and independence number conditions with a weaker minimum degree and independence number condition in the presence of sufficient connectivity. More specifically, it is noted that if G is a graph of order n and k ≥ 2 is a positive integer such that κ(G) ≥ k, δ(G) > (n+k²-k)/(k+1), and δ(G) ≥ α(G)+k-2, then G is hamiltonian. It is shown that if G is a graph of order n and k ≥ 3 is a positive integer such that κ(G) ≥ 4k²+1, δ(G) > (n+k²-2k)/k, and δ(G) ≥ α(G)+k-2, then G is hamiltonian-connected. This result supports the conjecture that if G is a graph of order n and k ≥ 3 is a positive integer such that κ(G) ≥ k, δ(G) > (n+k²-2k)/k, and δ(G) ≥ α(G)+k-2, then G is hamiltonian-connected, and the conjecture is verified for k = 3 and 4.
4
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Linear forests and ordered cycles

76%
EN
A collection $L = P¹ ∪ P² ∪ ... ∪ P^t$ (1 ≤ t ≤ k) of t disjoint paths, s of them being singletons with |V(L)| = k is called a (k,t,s)-linear forest. A graph G is (k,t,s)-ordered if for every (k,t,s)-linear forest L in G there exists a cycle C in G that contains the paths of L in the designated order as subpaths. If the cycle is also a hamiltonian cycle, then G is said to be (k,t,s)-ordered hamiltonian. We give sharp sum of degree conditions for nonadjacent vertices that imply a graph is (k,t,s)-ordered hamiltonian.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.