Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

Ograniczanie wyników

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
The paper deals with the following conjecture: if μ is a centered Gaussian measure on a Banach space F,λ > 1, K ⊂ F is a convex, symmetric, closed set, P ⊂ F is a symmetric strip, i.e. P = {x ∈ F : |x'(x)| ≤ 1} for some x' ∈ F', such that μ(K) = μ(P) then μ(λK) ≥ μ(λP). We prove that the conjecture is true under the additional assumption that K is "sufficiently symmetric" with respect to μ, in particular it is true when K is a ball in Hilbert space. As an application we give estimates of Gaussian measures of large and small balls in a Hilbert space.
Studia Mathematica
|
1985
|
tom 81
|
nr 1
107-126
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.