It is shown that every uncountable symmetric basic set in an F-space with a symmetric basis is equivalent to a basic set generated by one vector. We apply this result to investigate the structure of uncountable symmetric basic sets in Orlicz and Lorentz spaces.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
It is shown that the order of Gateaux smoothness of bump functions on a wide class of Banach spaces with unconditional basis is not better than that of Fréchet differentiability. It is proved as well that in the separable case this order for Banach lattices satisfying a lower p-estimate for 1≤ p < 2 can be only slightly better.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.