Alexander's projective capacity for the polydisk and the ellipsoid in $ℂ^N$ is computed. Sharper versions of two inequalities concerning this capacity and some other capacities in $ℂ^N$ are given. A sequence of orthogonal polynomials with respect to an appropriately defined measure supported on a compact subset K in $ℂ^N$ is proved to have an asymptotic behaviour in $ℂ^N$ similar to that of the Siciak homogeneous extremal function associated with K.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let K be a compact subset of $ℂ^N$. A sequence of nonnegative numbers defined by means of extremal points of K with respect to homogeneous polynomials is proved to be convergent. Its limit is called the homogeneous transfinite diameter of K. A few properties of this diameter are given and its value for some compact subsets of $ℂ^N$ is computed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.