Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  vibration
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper investigates the possibility of decomposing vibration signals into deterministic and nondeterministic parts, based on the Wold theorem. A short description of the theory of adaptive filters is presented. When an adaptive filter uses the delayed version of the input signal as the reference signal, it is possible to divide the signal into a deterministic (gear and shaft related) part and a nondeterministic (noise and rolling bearings) part. The idea of the self-adaptive filter (in the literature referred to as SANC or ALE) is presented and its most important features are discussed. The flowchart of the Matlab-based SANC algorithm is also presented. In practice, bearing fault signals are in fact nondeterministic components, due to a little jitter in their fundamental period. This phenomenon is illustrated using a simple example. The paper proposes a simulation of a signal containing deterministic and nondeterministic components. The self-adaptive filter is then applied - first to the simulated data. Next, the filter is applied to a real vibration signal from a wind turbine with an outer race fault. The necessity of resampling the real signal is discussed. The signal from an actual source has a more complex structure and contains a significant noise component, which requires additional demodulation of the decomposed signal. For both types of signals the proposed SANC filter shows a very good ability to decompose the signal.
EN
In this paper we consider a dynamic model for flow induced vibration of pipelines. We study the questions of existence and uniqueness of solutions of the system. Considering the flow rate as the control variable, we present three different necessary conditions of optimality. The last one with state constraint involves Differential Inclusions. The paper is concluded with an algorithm for computing the optimal controls.
EN
With the tools of modern metrology we can measure almost all variables in the phenomenon field of a working machine, and many of the measured quantities can be symptoms of machine conditions. On this basis, we can form a symptom observation matrix (SOM) intended for condition monitoring and wear trend (fault) identification. On the other hand, we know that contemporary complex machines may have many modes of failure, called faults. The paper presents a method of the extraction of the information about faults from the symptom observation matrix by means of singular value decomposition (SVD), in the form of generalized fault symptoms. As the readings of the symptoms can be unstable, the moving average of the SOM is applied with success. An attempt to assess the diagnostic contribution of a primary symptom is made, and also an approach to assess the symptom limit value and to connect the SVD methodology with neural nets is considered. Finally, a condition forecasting problem is discussed and an application of grey system theory (GST) to symptom prognosis is presented. These possibilities are illustrated by processing data taken directly from the machine vibration condition monitoring area.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.