Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  persistent homology
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Persistent Homology Analysis of RNA

100%
EN
Topological data analysis has been recently used to extract meaningful information frombiomolecules. Here we introduce the application of persistent homology, a topological data analysis tool, for computing persistent features (loops) of the RNA folding space. The scaffold of the RNA folding space is a complex graph from which the global features are extracted by completing the graph to a simplicial complex via the notion of clique and Vietoris-Rips complexes. The resulting simplicial complexes are characterised in terms of topological invariants, such as the number of holes in any dimension, i.e. Betti numbers. Our approach discovers persistent structural features, which are the set of smallest components to which the RNA folding space can be reduced. Thanks to this discovery, which in terms of data mining can be considered as a space dimension reduction, it is possible to extract a new insight that is crucial for understanding the mechanism of the RNA folding towards the optimal secondary structure. This structure is composed by the components discovered during the reduction step of the RNA folding space and is characterized by minimum free energy.
2
Content available remote

A topological approach for protein classification

100%
EN
Protein function and dynamics are closely related to its sequence and structure.However, prediction of protein function and dynamics from its sequence and structure is still a fundamental challenge in molecular biology. Protein classification, which is typically done through measuring the similarity between proteins based on protein sequence or physical information, serves as a crucial step toward the understanding of protein function and dynamics. Persistent homology is a new branch of algebraic topology that has found its success in the topological data analysis in a variety of disciplines, including molecular biology. The present work explores the potential of using persistent homology as an independent tool for protein classification. To this end, we propose a molecular topological fingerprint based support vector machine (MTF-SVM) classifier. Specifically,we construct machine learning feature vectors solely fromprotein topological fingerprints,which are topological invariants generated during the filtration process. To validate the presentMTF-SVMapproach, we consider four types of problems. First, we study protein-drug binding by using the M2 channel protein of influenza A virus. We achieve 96% accuracy in discriminating drug bound and unbound M2 channels. Secondly, we examine the use of MTF-SVM for the classification of hemoglobin molecules in their relaxed and taut forms and obtain about 80% accuracy. Thirdly, the identification of all alpha, all beta, and alpha-beta protein domains is carried out using 900 proteins.We have found a 85% success in this identification. Finally, we apply the present technique to 55 classification tasks of protein superfamilies over 1357 samples and 246 tasks over 11944 samples. Average accuracies of 82% and 73% are attained. The present study establishes computational topology as an independent and effective alternative for protein classification.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.