Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  numerical simulation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

A Hermite-type adaptive semi-Lagrangian scheme

100%
EN
We study a new Hermite-type interpolating operator arising in a semi-Lagrangian scheme for solving the Vlasov equation in the D phase space. Numerical results on uniform and adaptive grids are shown and compared with the biquadratic Lagrange interpolation introduced in (Campos Pinto and Mehrenberger, 2004) in the case of a rotating Gaussian.
EN
This work demonstrates an improved method to simulate long-distance femtosecond pulse propagation in highcontrast nanowaveguides. Different from typical beam propagation methods, the foundational tool here is capable of simulating strong spatiotemporal waveform reshaping and extreme spectral dynamics. Meanwhile, the ability to fully capture effects due to index contrast in the transverse direction is retained, without requiring a decomposition of the electric field in terms of waveguide modes. These simulations can be computationally expensive, however, so cost is reduced in the improved method by considering only the waveguide core. Fields in the cladding are then properly accounted for through a boundary condition suitable for the case of total internal reflection.
EN
In this work the attention is focused to the numerical simulation of the experimental bending tests carried out on a total of six reinforced concrete r.c. plates the latter aimed to provide a basic understanding of the its performance when strengthened by Fiber Reinforced Cementitius Matrix (FRCM) Composites. Three of those were used as control specimens. The numerical simulation was carried out by LUSAS software. A good correlation between the FE results and data obtained from the test, both in the load–deformation behavior and the failure load was highlighted. This permits to prove that applied strengthening system gives back an enhancement 2.5 times greater in respect of the unreinforced case. A greater energy dissipation ability and a residual load-bearing capacity makes the proposed system very useful in the retrofitting as well as in the case of strengthening of bridge structures. Based on the validation of the FE results in bending, the numerical analysis was also extended to characterize the behavior of this strengthening system in tensile.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.