Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  error estimation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Error estimation and adaptivity for nonlinear FE analysis

100%
EN
An adaptive strategy for nonlinear finite-element analysis, based on the combination of error estimation and h-remeshing, is presented. Its two main ingredients are a residual-type error estimator and an unstructured quadrilateral mesh generator. The error estimator is based on simple local computations over the elements and the so-called patches. In contrast to other residual estimators, no flux splitting is required. The adaptive strategy is illustrated by means of a complex nonlinear problem: the failure analysis of a single-edge notched beam. The quasi-brittle response of concrete is modelled by means of a nonlocal damage model.
EN
Progress in the medical diagnostic is relentlessly pushing the measurement technology as well with its intertwined mathematical models and solutions. Mathematics has applications to many problems that are vital to human health but not for all. In this article we describe how the mathematics of acoustocerebrography has become one of the most important applications of mathematics to the problems of brain monitoring as well we will show some algebraic problems which still have to be solved. Acoustocerebrography ([4, 1]) is a set of techniques of visualizing the state of (human) brain tissue and its changes with use of ultrasounds, which mainly rely on a relation between the tissue density and speed of propagation for ultrasound waves in this medium. Propagation speed or, equivalently, times of arriving for an ultrasound pulse, can be inferred from phase relations for various frequencies. Since, due to Kramers-Kronig relations, the propagation speeds depend significantly on the frequency of investigated waves, we consider multispectral wave packages of the form W (n) = ∑Hh=1 Ah ·  sin(2π ·fh  ·  n/F +  ψh), n = 0, . . . , N – 1 with appropriately chosen frequencies fh, h = 1, . . . ,H, amplifications Ah, h = 1, . . . ,H, start phases ψh, h = 1, . . . , H and sampling frequency F. In this paper we show some problems of algebraic and, to some extend, algorithmic nature which raise up in this topic. Like, for instance, the influence of relations between the signal length and frequency values on the error on estimated phases or on neutralizing alien frequencies. Another problem is finding appropriate initial phases for avoiding improper distributions of peaks in the resulting signal or finding a stable algorithm of phase unwinding which is resistant to sudden random disruptions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.