Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Fractional differential equations
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, we find the formula of general solution for a generalized impulsive differential equations of fractional-order q ∈ (2, 3).
2
100%
EN
In this paper, we study a kind of fractional differential system with impulsive effect and find the formula of general solution for the impulsive fractional-order system by analysis of the limit case (as impulse tends to zero). The obtained result shows that the deviation caused by impulses for fractional-order system is undetermined. An example is also provided to illustrate the result.
3
Content available remote

Oscillation of impulsive conformable fractional differential equations

100%
EN
In this paper, we investigate oscillation results for the solutions of impulsive conformable fractional differential equations of the form tkDαpttkDαxt+rtxt+qtxt=0,t≥t0,t≠tk,xtk+=akx(tk−),tkDαxtk+=bktk−1Dαx(tk−),k=1,2,…. $$\left\{ \begin{array}{l} {t_k}{D^\alpha }\left( {p\left( t \right)\left[ {{t_k}{D^\alpha }x\left( t \right) + r\left( t \right)x\left( t \right)} \right]} \right) + q\left( t \right)x\left( t \right) = 0,\quad t \ge {t_0},\;t \ne {t_k},\\ x\left( {t_k^ + } \right) = {a_k}x(t_k^ - ),\quad {t_k}{D^\alpha }x\left( {t_k^ + } \right) = {b_{k\;{t_{k - 1}}}}{D^\alpha }x(t_k^ - ),\quad \;k = 1,2, \ldots. \end{array} \right.$$ Some new oscillation results are obtained by using the equivalence transformation and the associated Riccati techniques.
EN
In this paper we consider the generalized impulsive system with Riemann-Liouville fractional-order q ∈ (1,2) and obtained the error of the approximate solution for this impulsive system by analyzing of the limit case (as impulses approach zero), as well as find the formula for a general solution. Furthermore, an example is given to illustrate the importance of our results.
5
Content available remote

A detailed analysis for the fundamental solution of fractional vibration equation

100%
EN
In this paper, we investigate the solution of the fractional vibration equation, where the damping term is characterized by means of the Caputo fractional derivative with the order α satisfying 0 < α < 1 or 1 < α < 2. Detailed analysis for the fundamental solution y(t) is carried out through the Laplace transform and its complex inversion integral formula. We conclude that y(t) is ultimately positive, and ultimately decreases monotonically and approaches zero for the case of 0 < α < 1, while y(t) is ultimately negative, and ultimately increases monotonically and approaches zero for the case of 1 < α < 2. We also consider the number of zeros, the maximum zero and the maximum extreme point of the fundamental solution y(t) for specified values of the coefficients and fractional order.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.