We show that for a polynomial mapping $F = (f₁,..., fₘ): ℂ^n → ℂ^m$ the Łojasiewicz exponent $𝓛_∞(F)$ of F is attained on the set ${z ∈ ℂ^n: f₁(z) ·...· fₘ(z) = 0}$.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let U be a neighbourhood of 0 ∈ ℂⁿ. We show that for a holomorphic mapping $F = (f₁,..., fₘ): U → ℂ^m$, F(0) = 0, the Łojasiewicz exponent 𝓛₀(F) is attained on the set {z ∈ U: f₁(z)·...·fₘ(z) = 0}.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
An effective formula for the Łojasiewicz exponent of a polynomial mapping of ℂ² into ℂ² at an isolated zero in terms of the resultant of its components is given.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let $h = ∑ h_{αβ} X^αY^β$ be a polynomial with complex coefficients. The Łojasiewicz exponent of the gradient of h at infinity is the least upper bound of the set of all real λ such that $|grad h(x,y)| ≥ c|(x,y)|^λ$ in a neighbourhood of infinity in ℂ², for c > 0. We estimate this quantity in terms of the Newton diagram of h. Equality is obtained in the nondegenerate case.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.