Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
PL
W praktycznych zastosowaniach teorii niezawodności konieczna jest znajomość liczbowych wartości charakterystyk, takich jak średni czas życia elementu lub systemu, intensywność awarii elementu, niezawodność elementu lub systemu. Jedynym rozsądnym sposobem określenia tych wielkości jest ich ocena oparta o badanie statystyczne, to znaczy estymacja na podstawie próby. W niniejszym artykule dokonamy przeglądu metod estymacji wspomnianych wyżej charakterystyk niezawodności. Ograniczymy się przy tym do przypadku, gdy czas bezawaryjnego działania elementu, zwany dalej czasem życia elementu, jest zmienną losową o rozkładzie wykładniczym. Założenie to jest przyjmowane dość powszechnie w teorii niezawodności, zwłaszcza w badaniach niezawodności urządzeń elektronicznych. Dane empiryczne zebrane przez wielu autorów (zob. np. Davis [7]) potwierdzają możliwość przyjęcia tego założenia z zadowalającym skutkiem. Warto zaznaczyć, że inne rozkłady stosowane w teorii niezawodności, jak rozkład Weibulla czy rozkład logarytmiczno-wykładniczy, dadzą się sprowadzić za pomocą prostych transformacji do rozkładu wykładniczego. Również, jak wykazały badania Barlowa i Proschana [1] i [2], metody badania i wnioskowania uzyskane dla rozkładu wykładniczego mogą służyć jako oszacowania dla rozkładów z monotoniczną intensywnością awarii. Zaletą wykładniczego rozkładu czasu życia elementu jest to, że pozwala on na efektywne przeprowadzenie obliczeń, a tym samym na proste i jasne zilustrowanie używanych metod estymacji.
2
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Review: J. R. Barra; Fundamentals of Statistics

100%
PL
Artykuł nie zawiera streszczenia
EN
The article contains no abstract
3
Content available remote

Tail orderings and the total time on test transform

100%
EN
The paper presents some connections between two tail orderings of distributions and the total time on test transform. The procedure for testing the pure-tail ordering is proposed.
4
Content available remote

Dispersive functions and stochastic orders

100%
EN
Generalizations of the hazard functions are proposed and general hazard rate orders are introduced. Some stochastic orders are defined as general ones. A unified derivation of relations between the dispersive order and some other orders of distributions is presented
5
64%
EN
Bartoszewicz and Benduch (2009) applied an idea of Lehmann and Rojo (1992) to a new setting and used the GTTT transform to define invariance properties and distances of some stochastic orders. In this paper Lehmann and Rojo's idea is applied to the class of models which is based on distributions which are compositions of distribution functions on [0,1] with underlying distributions. Some stochastic orders are invariant with respect to these models.
6
Content available remote

Weighting, likelihood ratio order and life distributions

64%
EN
We use weighted distributions with a weight function being a ratio of two densities to obtain some results of interest concerning life and residual life distributions. Our theorems are corollaries from results of Jain et al. (1989) and Bartoszewicz and Skolimowska (2006).
7
Content available remote

Robust estimation based on spacings in weighted exponential models

64%
EN
Using Zieliński's (1977, 1983) formalization of robustness Błażej (2007) obtained uniformly most bias-robust estimates (UMBREs) of the scale parameter for some statistical models (including the exponential model), in a class of linear functions of order statistics, when violations of the models are generated by weight functions. In this paper the UMBRE of the scale parameter, based on spacings, in two weighted exponential models is derived. Extensions of results of Bartoszewicz (1986, 1987) are given.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.