Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Total domination in categorical products of graphs

100%
EN
Several of the best known problems and conjectures in graph theory arise in studying the behavior of a graphical invariant on a graph product. Examples of this are Vizing's conjecture, Hedetniemi's conjecture and the calculation of the Shannon capacity of graphs, where the invariants are the domination number, the chromatic number and the independence number on the Cartesian, categorical and strong product, respectively. In this paper we begin an investigation of the total domination number on the categorical product of graphs. In particular, we show that the total domination number of the categorical product of a nontrivial tree and any graph without isolated vertices is equal to the product of their total domination numbers. In the process we establish a packing and covering equality for trees analogous to the well-known result of Meir and Moon. Specifically, we prove equality between the total domination number and the open packing number of any tree of order at least two.
2
64%
EN
The study of domination in Cartesian products has received its main motivation from attempts to settle a conjecture made by V.G. Vizing in 1968. He conjectured that γ(G)γ(H) is a lower bound for the domination number of the Cartesian product of any two graphs G and H. Most of the progress on settling this conjecture has been limited to verifying the conjectured lower bound if one of the graphs has a certain structural property. In addition, a number of authors have established bounds for dominating the Cartesian product of any two graphs. We show how it is possible to improve some of these bounds by imposing conditions on both graphs. For example, we establish a new lower bound for the domination number of T T, when T is a tree, and we improve an upper bound of Vizing in the case when one of the graphs has k > 1 dominating sets which cover the vertex set and the other has a dominating set which partitions in a certain way.
3
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Vizing's conjecture and the one-half argument

64%
EN
The domination number of a graph G is the smallest order, γ(G), of a dominating set for G. A conjecture of V. G. Vizing [5] states that for every pair of graphs G and H, γ(G☐H) ≥ γ(G)γ(H), where G☐H denotes the Cartesian product of G and H. We show that if the vertex set of G can be partitioned in a certain way then the above inequality holds for every graph H. The class of graphs G which have this type of partitioning includes those whose 2-packing number is no smaller than γ(G)-1 as well as the collection of graphs considered by Barcalkin and German in [1]. A crucial part of the proof depends on the well-known fact that the domination number of any connected graph of order at least two is no more than half its order.
EN
Associative products are defined using a scheme of Imrich & Izbicki [18]. These include the Cartesian, categorical, strong and lexicographic products, as well as others. We examine which product ⊗ and parameter p pairs are multiplicative, that is, p(G⊗H) ≥ p(G)p(H) for all graphs G and H or p(G⊗H) ≤ p(G)p(H) for all graphs G and H. The parameters are related to independence, domination and irredundance. This includes Vizing's conjecture directly, and indirectly the Shannon capacity of a graph and Hedetniemi's coloring conjecture.
5
64%
EN
In this paper we consider the Cartesian product of an arbitrary graph and a complete graph of order two. Although an upper and lower bound for the domination number of this product follow easily from known results, we are interested in the graphs that actually attain these bounds. In each case, we provide an infinite class of graphs to show that the bound is sharp. The graphs that achieve the lower bound are of particular interest given the special nature of their dominating sets and are investigated further.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.