Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
Recently it was proved for 1 < p < ∞ that $ω^{m}(f,t)_{p}$, a modulus of smoothness on the unit sphere, and $K̃ₘ(f,t^{m})_{p}$, a K-functional involving the Laplace-Beltrami operator, are equivalent. It will be shown that the range 1 < p < ∞ is optimal; that is, the equivalence $ω^{m}(f,t)_{p} ≈ K̃ₘ(f,t^{r})_{p}$ does not hold either for p = ∞ or for p = 1.
2
Content available remote

Moduli of smoothness of functions and their derivatives

63%
EN
Relations between moduli of smoothness of the derivatives of a function and those of the function itself are investigated. The results are for $L_{p}(T)$ and $L_{p}[-1,1]$ for 0 < p < ∞ using the moduli of smoothness $ω^{r}(f,t)_{p}$ and $ω^{r}_{φ}(f,t)_{p}$ respectively.
3
Content available remote

Equivalence of measures of smoothness in $L_{p}(S^{d-1})$, 1 < p < ∞

51%
EN
Suppose Δ̃ is the Laplace-Beltrami operator on the sphere $S^{d-1}, Δ^{k}_{ρ}f(x) = Δ_{ρ}Δ^{k-1}_{ρ}f(x)$ and $Δ_{ρ}f(x) = f(ρx) - f(x)$ where ρ ∈ SO(d). Then $ω^{m}(f,t)_{L_{p}(S^{d-1})} ≡ sup{∥Δ^{m}_{ρ}f∥_{L_{p}(S^{d-1})}: ρ ∈ SO(d), max_{x∈ S^{d-1}} ρx·x ≥ cos t}$ and $K̃ₘ(f,t^{m})_{p} ≡ inf{∥f - g∥_{L_{p}(S^{d-1})} + t^{m}∥(-Δ̃)^{m/2}g∥_{L_{p}(S^{d-1})}: g ∈ 𝓓((-Δ̃)^{m/2})}$ are equivalent for 1 < p < ∞. We note that for even m the relation was recently investigated by the second author. The equivalence yields an extension of the results on sharp Jackson inequalities on the sphere. A new strong converse inequality for $L_{p}(S^{d-1})$ given in this paper plays a significant role in the proof.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.