Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

The Wiener number of Kneser graphs

100%
EN
The Wiener number of a graph G is defined as 1/2∑d(u,v), where u,v ∈ V(G), and d is the distance function on G. The Wiener number has important applications in chemistry. We determine the Wiener number of an important family of graphs, namely, the Kneser graphs.
2
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Fall coloring of graphs I

100%
EN
A fall coloring of a graph G is a proper coloring of the vertex set of G such that every vertex of G is a color dominating vertex in G (that is, it has at least one neighbor in each of the other color classes). The fall coloring number $χ_f(G)$ of G is the minimum size of a fall color partition of G (when it exists). Trivially, for any graph G, $χ(G) ≤ χ_f(G)$. In this paper, we show the existence of an infinite family of graphs G with prescribed values for χ(G) and $χ_f(G)$. We also obtain the smallest non-fall colorable graphs with a given minimum degree δ and determine their number. These answer two of the questions raised by Dunbar et al.
3
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

The Wiener number of powers of the Mycielskian

100%
EN
The Wiener number of a graph G is defined as $1/2 ∑_{u,v ∈ V(G)} d(u,v)$, d the distance function on G. The Wiener number has important applications in chemistry. We determine a formula for the Wiener number of an important graph family, namely, the Mycielskians μ(G) of graphs G. Using this, we show that for k ≥ 1, $W(μ(Sₙ^k)) ≤ W(μ(Tₙ^k)) ≤ W(μ(Pₙ^k))$, where Sₙ, Tₙ and Pₙ denote a star, a general tree and a path on n vertices respectively. We also obtain Nordhaus-Gaddum type inequality for the Wiener number of $μ(G^k)$.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.