Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Topological groups and convex sets homeomorphic to non-separable Hilbert spaces

100%
EN
Let X be a topological group or a convex set in a linear metric space. We prove that X is homeomorphic to (a manifold modeled on) an infinite-dimensional Hilbert space if and only if X is a completely metrizable absolute (neighborhood) retract with ω-LFAP, the countable locally finite approximation property. The latter means that for any open cover $$ \mathcal{U} $$ of X there is a sequence of maps (f n: X → X)nεgw such that each f n is $$ \mathcal{U} $$-near to the identity map of X and the family {f n(X)}n∈ω is locally finite in X. Also we show that a metrizable space X of density dens(X) < $$ \mathfrak{d} $$ is a Hilbert manifold if X has gw-LFAP and each closed subset A ⊂ X of density dens(A) < dens(X) is a Z ∞-set in X.
2
Content available remote

Functor of extension in Hilbert cube and Hilbert space

76%
Open Mathematics
|
2014
|
tom 12
|
nr 6
887-895
EN
It is shown that if Ω = Q or Ω = ℓ 2, then there exists a functor of extension of maps between Z-sets in Ω to mappings of Ω into itself. This functor transforms homeomorphisms into homeomorphisms, thus giving a functorial setting to a well-known theorem of Anderson [Anderson R.D., On topological infinite deficiency, Michigan Math. J., 1967, 14, 365–383]. It also preserves convergence of sequences of mappings, both pointwise and uniform on compact sets, and supremum distances as well as uniform continuity, Lipschitz property, nonexpansiveness of maps in appropriate metrics.
3
Content available remote

Spaces of measurable functions

64%
Open Mathematics
|
2013
|
tom 11
|
nr 7
1304-1316
EN
For a metrizable space X and a finite measure space (Ω, $\mathfrak{M}$, µ), the space M µ(X) of all equivalence classes (under the relation of equality almost everywhere mod µ) of $\mathfrak{M}$-measurable functions from Ω to X, whose images are separable, equipped with the topology of convergence in measure, and some of its subspaces are studied. In particular, it is shown that M µ(X) is homeomorphic to a Hilbert space provided µ is (nonzero) nonatomic and X is completely metrizable and has more than one point.
4
52%
EN
Let X be an infinite, locally connected, locally compact separable metrizable space. The space C(X) of real-valued continuous functions defined on X with the compact-open topology is a separable Fréchet space, so it is homeomorphic to the psuedo-interior s = (−1, 1)ℕ of the Hilbert cube Q = [−1, 1]ℕ. In this paper, generalizing the Sakai-Uehara’s result to the non-compact case, we construct a natural compactification $$ \bar C $$(X) of C(X) such that the pair ($$ \bar C $$(X), C(X)) is homeomorphic to (Q, s). In case X has no isolated points, this compactification $$ \bar C $$(X) coincides with the space USCCF(X,) of all upper semi-continuous set-valued functions φ: X → = [−∞, ∞] such that each φ(x) is a closed interval, where the topology for USCCF(X, ) is inherited from the Fell hyperspace Cld*F(X × ) of all closed sets in X × .
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.