Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper the classical detection filter design problem is considered as an input reconstruction problem. Input reconstruction is viewed as a dynamic inversion problem. This approach is based on the existence of the left inverse and arrives at detector architectures whose outputs are the fault signals while the inputs are the measured system inputs and outputs and possibly their time derivatives. The paper gives a brief summary of the properties and existence of the inverse for linear and nonlinear multivariable systems. A view of the inversion-based input reconstruction with special emphasis on the aspects of fault detection and isolation by using invariant subspaces and the results of classical geometrical systems theory is provided. The applicability of the idea to fault reconstruction is demonstrated through examples.
2
Content available remote

LPV design of fault-tolerant control for road vehicles

100%
EN
The aim of the paper is to present a supervisory decentralized architecture for the design and development of reconfigurable and fault-tolerant control systems in road vehicles. The performance specifications are guaranteed by local controllers, while the coordination of these components is provided by a supervisor. Since the monitoring components and FDI filters provide the supervisor with information about the various vehicle maneuvers and the different fault operations, it is able to make decisions about necessary interventions into the vehicle motions and guarantee reconfigurable and fault-tolerant operation of the vehicle. The design of the proposed reconfigurable and fault-tolerant control is based on an LPV method that uses monitored scheduling variables during the operation of the vehicle.
EN
A multi-level reconfiguration framework is proposed for fault tolerant control of over-actuated aerial vehicles, where the levels indicate how much authority is given to the reconfiguration task. On the lowest, first level the fault is accommodated by modifying only the actuator/sensor configuration, so the fault remains hidden from the baseline controller. A dynamic reallocation scheme is applied on this level. The allocation mechanism exploits the actuator/sensor redundancy available on the aircraft. When the fault cannot be managed at the actuator/sensor level, the reconfiguration process has access to the baseline controller. Based on the LPV control framework, this is done by introducing fault-specific scheduling parameters. The baseline controller is designed to provide an acceptable performance level along all fault scenarios coded in these scheduling variables. The decision on which reconfiguration level has to be initiated in response to a fault is determined by a supervisor unit. The method is demonstrated on a full six-degrees-of-freedom nonlinear simulation model of the GTM UAV.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.