Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
A linear forest is a graph whose connected components are chordless paths. A linear partition of a graph G is a partition of its edge set into linear forests and la(G) is the minimum number of linear forests in a linear partition. In this paper we consider linear partitions of cubic simple graphs for which it is well known that la(G) = 2. A linear partition $L = (L_B,L_R)$ is said to be odd whenever each path of $L_B ∪ L_R$ has odd length and semi-odd whenever each path of $L_B$ (or each path of $L_R$) has odd length. In [2] Aldred and Wormald showed that a cubic graph G is 3-edge colourable if and only if G has an odd linear partition. We give here more precise results and we study moreover relationships between semi-odd linear partitions and perfect matchings.
2
100%
EN
We consider cubic graphs formed with k ≥ 2 disjoint claws $C_i ~ K_{1,3}$ (0 ≤ i ≤ k-1) such that for every integer i modulo k the three vertices of degree 1 of $C_i$ are joined to the three vertices of degree 1 of $C_{i-1}$ and joined to the three vertices of degree 1 of $C_{i+1}$. Denote by $t_i$ the vertex of degree 3 of $C_i$ and by T the set ${t₁,t₂,...,t_{k-1}}$. In such a way we construct three distinct graphs, namely FS(1,k), FS(2,k) and FS(3,k). The graph FS(j,k) (j ∈ {1,2,3}) is the graph where the set of vertices $⋃_{i = 0}^{i = k-1} V(C_i)∖T$ induce j cycles (note that the graphs FS(2,2p+1), p ≥ 2, are the flower snarks defined by Isaacs [8]). We determine the number of perfect matchings of every FS(j,k). A cubic graph G is said to be 2-factor hamiltonian if every 2-factor of G is a hamiltonian cycle. We characterize the graphs FS(j,k) that are 2-factor hamiltonian (note that FS(1,3) is the "Triplex Graph" of Robertson, Seymour and Thomas [15]). A strong matching M in a graph G is a matching M such that there is no edge of E(G) connecting any two edges of M. A cubic graph having a perfect matching union of two strong matchings is said to be a Jaeger's graph. We characterize the graphs FS(j,k) that are Jaeger's graphs.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.