Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

A joint regression modeling framework for analyzing bivariate binary data in R

100%
EN
We discuss some of the features of the R add-on package GJRM which implements a flexible joint modeling framework for fitting a number of multivariate response regression models under various sampling schemes. In particular,we focus on the case inwhich the user wishes to fit bivariate binary regression models in the presence of several forms of selection bias. The framework allows for Gaussian and non-Gaussian dependencies through the use of copulae, and for the association and mean parameters to depend on flexible functions of covariates. We describe some of the methodological details underpinning the bivariate binary models implemented in the package and illustrate them by fitting interpretable models of different complexity on three data-sets.
2
Content available remote

High level quantile approximations of sums of risks

100%
EN
The approximation of a high level quantile or of the expectation over a high quantile (Value at Risk (VaR) or Tail Value at Risk (TVaR) in risk management) is crucial for the insurance industry.We propose a new method to estimate high level quantiles of sums of risks. It is based on the estimation of the ratio between the VaR (or TVaR) of the sum and the VaR (or TVaR) of the maximum of the risks. We show that using the distribution of the maximum to approximate the VaR is much better than using the marginal. Our method seems to work well in high dimension (100 and higher) and gives good results when approximating the VaR or TVaR in high levels on strongly dependent risks where at least one of the risks is heavy tailed.
EN
Nelsen et al. [20] find bounds for bivariate distribution functions when there are constraints on the values of its quartiles. Tankov [25] generalizes this work by giving explicit expressions for the best upper and lower bounds for a bivariate copula when its values on a compact subset of [0; 1]2 are known. He shows that they are quasi-copulas and not necessarily copulas. Tankov [25] and Bernard et al. [3] both give sufficient conditions for these bounds to be copulas. In this note we give weaker sufficient conditions to ensure that both bounds are simultaneously copulas. Furthermore, we develop a novel application to quantitative risk management by computing bounds on a bivariate risk measure. This can be useful in optimal portfolio selection, in reinsurance, in pricing bivariate derivatives or in determining capital requirements when only partial information on dependence is available.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.