Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Ordered Rings and Fields

100%
EN
We introduce ordered rings and fields following Artin-Schreier’s approach using positive cones. We show that such orderings coincide with total order relations and give examples of ordered (and non ordered) rings and fields. In particular we show that polynomial rings can be ordered in (at least) two different ways [8, 5, 4, 9]. This is the continuation of the development of algebraic hierarchy in Mizar [2, 3].
2
Content available remote

On Roots of Polynomials and Algebraically Closed Fields

100%
EN
In this article we further extend the algebraic theory of polynomial rings in Mizar [1, 2, 3]. We deal with roots and multiple roots of polynomials and show that both the real numbers and finite domains are not algebraically closed [5, 7]. We also prove the identity theorem for polynomials and that the number of multiple roots is bounded by the polynomial’s degree [4, 6].
3
Content available remote

Proth Numbers

100%
EN
In this article we introduce Proth numbers and prove two theorems on such numbers being prime [3]. We also give revised versions of Pocklington’s theorem and of the Legendre symbol. Finally, we prove Pepin’s theorem and that the fifth Fermat number is not prime.
4
Content available remote

Introduction to Rational Functions

100%
EN
In this article we formalize rational functions as pairs of polynomials and define some basic notions including the degree and evaluation of rational functions [8]. The main goal of the article is to provide properties of rational functions necessary to prove a theorem on the stability of networks
5
Content available remote

Modular Integer Arithmetic

100%
EN
In this article we show the correctness of integer arithmetic based on Chinese Remainder theorem as described e.g. in [11]: Integers are transformed to finite sequences of modular integers, on which the arithmetic operations are performed. Retransformation of the results to the integers is then accomplished by means of the Chinese Remainder theorem. The method presented is a typical example for computing in homomorphic images.
6
Content available remote

Some Algebraic Properties of Polynomial Rings

64%
EN
In this article we extend the algebraic theory of polynomial rings, formalized in Mizar [1], based on [2], [3]. After introducing constant and monic polynomials we present the canonical embedding of R into R[X] and deal with both unit and irreducible elements. We also define polynomial GCDs and show that for fields F and irreducible polynomials p the field F[X]/ is isomorphic to the field of polynomials with degree smaller than the one of p.
7
Content available remote

The First Isomorphism Theorem and Other Properties of Rings

64%
EN
Different properties of rings and fields are discussed [12], [41] and [17]. We introduce ring homomorphisms, their kernels and images, and prove the First Isomorphism Theorem, namely that for a homomorphism f : R → S we have R/ker(f) ≅ Im(f). Then we define prime and irreducible elements and show that every principal ideal domain is factorial. Finally we show that polynomial rings over fields are Euclidean and hence also factorial
8
Content available remote

Multiplication of Polynomials using Discrete Fourier Transformation

64%
EN
In this article we define the Discrete Fourier Transformation for univariate polynomials and show that multiplication of polynomials can be carried out by two Fourier Transformations with a vector multiplication in-between. Our proof follows the standard one found in the literature and uses Vandermonde matrices, see e.g. [27].
9
Content available remote

Schur's Theorem on the Stability of Networks

64%
EN
A complex polynomial is called a Hurwitz polynomial if all its roots have a real part smaller than zero. This kind of polynomial plays an all-dominant role in stability checks of electrical networks.In this article we prove Schur's criterion [17] that allows to decide whether a polynomial p(x) is Hurwitz without explicitly computing its roots: Schur's recursive algorithm successively constructs polynomials pi(x) of lesser degree by division with x - c, ℜ {c} < 0, such that pi(x) is Hurwitz if and only if p(x) is.
10
Content available remote

A Test for the Stability of Networks

64%
EN
A complex polynomial is called a Hurwitz polynomial, if all its roots have a real part smaller than zero. This kind of polynomial plays an all-dominant role in stability checks of electrical (analog or digital) networks. In this article we prove that a polynomial p can be shown to be Hurwitz by checking whether the rational function e(p)/o(p) can be realized as a reactance of one port, that is as an electrical impedance or admittance consisting of inductors and capacitors. Here e(p) and o(p) denote the even and the odd part of p [25].
11
Content available remote

Characteristic of Rings. Prime Fields

64%
EN
The notion of the characteristic of rings and its basic properties are formalized [14], [39], [20]. Classification of prime fields in terms of isomorphisms with appropriate fields (ℚ or ℤ/p) are presented. To facilitate reasonings within the field of rational numbers, values of numerators and denominators of basic operations over rationals are computed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.