Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Comparison theorems for noncanonical third order nonlinear differential equations

100%
EN
The aim of our paper is to study oscillatory and asymptotic properties of solutions of nonlinear differential equations of the third order with quasiderivatives. We prove comparison theorems on property A between linear and nonlinear equations. Some integral criteria ensuring property A for nonlinear equations are also given. Our assumptions on the nonlinearity of f are restricted to its behavior only in a neighborhood of zero and a neighborhood of infinity.
2
100%
EN
This paper is concerned with the asymptotic behavior of solutions of nonlinear differential equations of the third-order with quasiderivatives. We give the necessary and sufficient conditions guaranteeing the existence of bounded nonoscillatory solutions. Sufficient conditions are proved via a topological approach based on the Banach fixed point theorem.
EN
In this paper, we compute explicitly the oscillation constant for certain half-linear second-order differential equations having different periodic coefficients. Our result covers known result concerning half-linear Euler type differential equations with α-periodic positive coefficients. Additionally, our result is new and original in case that the least common multiple of these periods is not defined. We give an example and corollaries which illustrate cases that are solved with our result.
EN
The objective of this paper is to study asymptotic properties of the third-order neutral differential equation $$ \left[ {a\left( t \right)\left( {\left[ {x\left( t \right) + p\left( t \right)x\left( {\sigma \left( t \right)} \right)} \right]^{\prime \prime } } \right)^\gamma } \right]^\prime + q\left( t \right)f\left( {x\left[ {\tau \left( t \right)} \right]} \right) = 0, t \geqslant t_0 . \left( E \right) $$. We will establish two kinds of sufficient conditions which ensure that either all nonoscillatory solutions of (E) converge to zero or all solutions of (E) are oscillatory. Some examples are considered to illustrate the main results.
5
81%
EN
Globally positive solutions for the third order differential equation with the damping term and delay, $$ x''' + q(t)x'(t) - r(t)f(x(\phi (t))) = 0, $$ are studied in the case where the corresponding second order differential equation $$ y'' + q(t)y = 0 $$ is oscillatory. Necessary and sufficient conditions for all nonoscillatory solutions of (*) to be unbounded are given. Furthermore, oscillation criteria ensuring that any solution is either oscillatory or unbounded together with its first and second derivatives are presented. The comparison of results with those in the case when (**) is nonoscillatory is given, as well.
6
Content available remote

Oscillation of impulsive conformable fractional differential equations

62%
EN
In this paper, we investigate oscillation results for the solutions of impulsive conformable fractional differential equations of the form tkDαpttkDαxt+rtxt+qtxt=0,t≥t0,t≠tk,xtk+=akx(tk−),tkDαxtk+=bktk−1Dαx(tk−),k=1,2,…. $$\left\{ \begin{array}{l} {t_k}{D^\alpha }\left( {p\left( t \right)\left[ {{t_k}{D^\alpha }x\left( t \right) + r\left( t \right)x\left( t \right)} \right]} \right) + q\left( t \right)x\left( t \right) = 0,\quad t \ge {t_0},\;t \ne {t_k},\\ x\left( {t_k^ + } \right) = {a_k}x(t_k^ - ),\quad {t_k}{D^\alpha }x\left( {t_k^ + } \right) = {b_{k\;{t_{k - 1}}}}{D^\alpha }x(t_k^ - ),\quad \;k = 1,2, \ldots. \end{array} \right.$$ Some new oscillation results are obtained by using the equivalence transformation and the associated Riccati techniques.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.