Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs

100%
EN
We prove that every planar graph with maximum degree ∆ is strong edge (2∆−1)-colorable if its girth is at least 40 [...] +1. The bound 2∆−1 is reached at any graph that has two adjacent vertices of degree ∆.
2
Content available remote

On the Weight of Minor Faces in Triangle-Free 3-Polytopes

100%
EN
The weight w(f) of a face f in a 3-polytope is the degree-sum of vertices incident with f. It follows from Lebesgue’s results of 1940 that every triangle-free 3-polytope without 4-faces incident with at least three 3-vertices has a 4-face with w ≤ 21 or a 5-face with w ≤ 17. Here, the bound 17 is sharp, but it was still unknown whether 21 is sharp. The purpose of this paper is to improve this 21 to 20, which is best possible.
3
Content available remote

All Tight Descriptions of 3-Stars in 3-Polytopes with Girth 5

100%
EN
Lebesgue (1940) proved that every 3-polytope P5 of girth 5 has a path of three vertices of degree 3. Madaras (2004) refined this by showing that every P5 has a 3-vertex with two 3-neighbors and the third neighbor of degree at most 4. This description of 3-stars in P5s is tight in the sense that no its parameter can be strengthened due to the dodecahedron combined with the existence of a P5 in which every 3-vertex has a 4-neighbor. We give another tight description of 3-stars in P5s: there is a vertex of degree at most 4 having three 3-neighbors. Furthermore, we show that there are only these two tight descriptions of 3-stars in P5s. Also, we give a tight description of stars with at least three rays in P5s and pose a problem of describing all such descriptions. Finally, we prove a structural theorem about P5s that might be useful in further research.
4
Content available remote

An Extension of Kotzig’s Theorem

81%
EN
In 1955, Kotzig proved that every 3-connected planar graph has an edge with the degree sum of its end vertices at most 13, which is tight. An edge uv is of type (i, j) if d(u) ≤ i and d(v) ≤ j. Borodin (1991) proved that every normal plane map contains an edge of one of the types (3, 10), (4, 7), or (5, 6), which is tight. Cole, Kowalik, and Škrekovski (2007) deduced from this result by Borodin that Kotzig’s bound of 13 is valid for all planar graphs with minimum degree δ at least 2 in which every d-vertex, d ≥ 12, has at most d − 11 neighbors of degree 2. We give a common extension of the three above results by proving for any integer t ≥ 1 that every plane graph with δ ≥ 2 and no d-vertex, d ≥ 11+t, having more than d − 11 neighbors of degree 2 has an edge of one of the following types: (2, 10+t), (3, 10), (4, 7), or (5, 6), where all parameters are tight.
5
Content available remote

5-Stars of Low Weight in Normal Plane Maps with Minimum Degree 5

81%
EN
It is known that there are normal plane maps M5 with minimum degree 5 such that the minimum degree-sum w(S5) of 5-stars at 5-vertices is arbitrarily large. In 1940, Lebesgue showed that if an M5 has no 4-stars of cyclic type (5, 6, 6, 5) centered at 5-vertices, then w(S5) ≤ 68. We improve this bound of 68 to 55 and give a construction of a (5, 6, 6, 5)-free M5 with w(S5) = 48
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.