Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Supermagic Generalized Double Graphs 1

100%
EN
A graph G is called supermagic if it admits a labelling of the edges by pairwise di erent consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we will introduce some constructions of supermagic labellings of some graphs generalizing double graphs. Inter alia we show that the double graphs of regular Hamiltonian graphs and some circulant graphs are supermagic.
2
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

𝓟-bipartitions of minor hereditary properties

64%
EN
We prove that for any two minor hereditary properties 𝓟₁ and 𝓟₂, such that 𝓟₂ covers 𝓟₁, and for any graph G ∈ 𝓟₂ there is a 𝓟₁-bipartition of G. Some remarks on minimal reducible bounds are also included.
EN
Let 𝓟₁, 𝓟₂ be graph properties. A vertex (𝓟₁,𝓟₂)-partition of a graph G is a partition {V₁,V₂} of V(G) such that for i = 1,2 the induced subgraph $G[V_i]$ has the property $𝓟_i$. A property ℜ = 𝓟₁∘𝓟₂ is defined to be the set of all graphs having a vertex (𝓟₁,𝓟₂)-partition. A graph G ∈ 𝓟₁∘𝓟₂ is said to be uniquely (𝓟₁,𝓟₂)-partitionable if G has exactly one vertex (𝓟₁,𝓟₂)-partition. In this note, we show the existence of uniquely partitionable planar graphs with respect to hereditary additive properties having a forbidden tree.
4
Content available remote

Supermagic Graphs Having a Saturated Vertex

64%
EN
A graph is called supermagic if it admits a labeling of the edges by pairwise different consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we establish some conditions for graphs with a saturated vertex to be supermagic. Inter alia we show that complete multipartite graphs K1,n,n and K1,2,...,2 are supermagic.
5
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Total edge irregularity strength of trees

64%
EN
A total edge-irregular k-labelling ξ:V(G)∪ E(G) → {1,2,...,k} of a graph G is a labelling of vertices and edges of G in such a way that for any different edges e and f their weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The minimum k for which a graph G has a total edge-irregular k-labelling is called the total edge irregularity strength of G, tes(G). In this paper we prove that for every tree T of maximum degree Δ on p vertices tes(T) = max{⎡(p+1)/3⎤,⎡(Δ+1)/2⎤}.
6
64%
EN
A graph is called degree-magic if it admits a labelling of the edges by integers 1, 2,..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal to (1+ |E(G)|)/2*deg(v). Degree-magic graphs extend supermagic regular graphs. In this paper we characterize complete tripartite degree-magic graphs.
7
51%
EN
Given a family 𝓕 of multigraphs without isolated vertices, a multigraph M is called 𝓕-decomposable if M is an edge disjoint union of multigraphs each of which is isomorphic to a member of 𝓕. We present necessary and sufficient conditions for the existence of such decompositions if 𝓕 comprises two multigraphs from the set consisting of a 2-cycle, a 2-matching and a path with two edges.
8
Content available remote

M2-Edge Colorings Of Cacti And Graph Joins

51%
EN
An edge coloring φ of a graph G is called an M2-edge coloring if |φ(v)| ≤ 2 for every vertex v of G, where φ(v) is the set of colors of edges incident with v. Let 𝒦2(G) denote the maximum number of colors used in an M2-edge coloring of G. In this paper we determine 𝒦2(G) for trees, cacti, complete multipartite graphs and graph joins.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.