Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Evolving co-adapted subcomponents in assembler encoding

100%
EN
The paper presents a new Artificial Neural Network (ANN) encoding method called Assembler Encoding (AE). It assumes that the ANN is encoded in the form of a program (Assembler Encoding Program, AEP) of a linear organization and of a structure similar to the structure of a simple assembler program. The task of the AEP is to create a Connectivity Matrix (CM) which can be transformed into the ANN of any architecture. To create AEPs, and in consequence ANNs, genetic algorithms (GAs) are used. In addition to the outline of AE, the paper also presents a new AEP encoding method, i.e., the method used to represent the AEP in the form of a chromosome or a set of chromosomes. The proposed method assumes the evolution of individual components of AEPs, i.e., operations and data, in separate populations. To test the method, experiments in two areas were carried out, i.e., in optimization and in a predator-prey problem. In the first case, the task of AE was to create matrices which constituted a solution to the optimization problem. In the second case, AE was responsible for constructing neural controllers used to control artificial predators whose task was to capture a fast-moving prey.
2
100%
EN
The problem of continuous position availability is one of the most important issues connected with the human activity at sea. Because the availability of satellite navigational systems can be limited in some cases, e.g. during military operations, one has to consider additional methods of acquiring information about the ship's position. In this paper one of these methods is presented, which is based on exploiting landmarks located on a coastline. A navigational radar is used to obtain information about these points. In order to estimate the ship's position by means of a set of landmarks, it is necessary to know their accurate locations. The paper presents a landmark identification method based on the comparison of bearing and distance trees representing pattern points generated from a chart, as well as points extracted from a radar image.
3
Content available remote

Searching for optimal size neural networks in Assembler Encoding

38%
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.