Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

$𝒞^∞$-vectors and boundedness

100%
EN
The following two questions as well as their relationship are studied: (i) Is a closed linear operator in a Banach space bounded if its $𝒞^∞$-vectors coincide with analytic (or semianalytic) ones? (ii) When are the domains of two successive powers of the operator in question equal? The affirmative answer to the first question is established in case of paranormal operators. All these investigations are illustrated in the context of weighted shifts.
2
Content available remote

Componentwise and Cartesian decompositions of linear relations

87%
EN
Let A be a, not necessarily closed, linear relation in a Hilbert space ℌ with a multivalued part mul A. An operator B in ℌ with ran B ⊥ mul A** is said to be an operator part of A when A = B +̂ ({0} × mul A), where the sum is componentwise (i.e. span of the graphs). This decomposition provides a counterpart and an extension for the notion of closability of (unbounded) operators to the setting of linear relations. Existence and uniqueness criteria for an operator part are established via the so-called canonical decomposition of A. In addition, conditions are developed for the above decomposition to be orthogonal (components defined in orthogonal subspaces of the underlying space). Such orthogonal decompositions are shown to be valid for several classes of relations. The relation A is said to have a Cartesian decomposition if A = U + iV, where U and V are symmetric relations and the sum is operatorwise. The connection between a Cartesian decomposition of A and the real and imaginary parts of A is investigated.
3
Content available remote

Włodzimierz Mlak (1931-1994)

81%
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.