Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
CONTENTS Introduction......................................................................................................................................... 5 1. n-Monotonic functions on (— ∞, ∞)........................................................................................... 6 2. Order relations in the set of probability distribution functions....................................................... 12  2.1. Preliminary concepts............................................................................................................ 12  2.2. Relations $≤_{1.n}, ≤_{2.n}$............................................................................................. 13  2.3. Extremal probability distribution functions........................................................................ 17  2.4. Relations $≤_{2.0}, ≤_{2.0}$............................................................................................. 18  2.5. Isotonic operators................................................................................................................. 22  2.6. Remarks about quasi-ordering relations in the set of random variables.................. 26  3. Order relationship between queueing systems................................................................. 26  3.1. Preliminary concepts, $GI^{(x)}/G^{(y)}/1$ queues.......................................................... 26  3.2. $GI^{(x)}/G/1$ queues........................................................................................................... 27  3.3. Order relationship between $GI^{(x)}/M^{(y)}/1$ and $M^{(x)}/G^{(y)}/1$ queues...... 30  4. Bounds for $GI^{(x)}/G^{(y)}/1$ queues................................................................................ 32  4.1. Introduction............................................................................................................................. 32  4.2. Bounds for $GI^{(x)}/G^{(y)}/1$ queues ........................................................................... 33  4.3. Bounds for $GI^{(x)}/M^{(y)}/1, M^{(x)}/G^{(y)}/1$ queues............................................... 36  4.4. Application of the relations $≤_{1.n} ≤_{2.n}$ in queues............................................ 37 Appendix...................................................................................................................................................... 38 References.................................................................................................................................................. 46
2
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

A note on the history of the Poisson process

96%
PL
Artykuł jest poświęcony historii współczesnej koncepcji procesu Poissona (czasami nazywanej losową miarą Poissona). Zaczynamy od początków, które są zawarte w pracach F. Lundberga i W. Fellera aż do R´enyi (1967) i wreszcie, konstrukcji procesów Poissona przez procesy dwumianowe (lub Bernoulli’ego), które można znaleźć w pracach Moyala (1962), Meckego (1967) i Kingmana (1967). Również u Ryll-Nardzewskiego (1954) ta konstrukcja została wykorzystana do dowodu twierdzenia o jednorodnych procesach Poissona.
EN
This note reviews how the contemporary concept of the Poisson process (sometimes called the Poisson random measure or Poisson point process) evolved through out the time up to recent times. That is from F. Lundberg and W. Feller up to A. Renyi (1967) paper and finally, a construction of Poisson processes by binomial (or Bernoulli) processes, which can be found in J.E. Moyal (1962), J. Mecke (1967) and J.F. Kingman (1967) papers. Also in C. Ryll-Nardzewski (1953) this construction was used in the proof of Theorem for homogeneous Poisson processes.
EN
The authors review and criticize different approaches for calculations of ruin probabilities in one or multiperiod life insurance portfolios. They claim that precise calculations are time-consuming and in some cases (especially in the multiperiod ones) are practically inaccessible even if theoretical formulae are available. The reviewer considers that, because parameters of any such model must be estimated somehow, then precision in calculations cannot be achieved. For example, the authors assume a constant interest rate, which is not precisely the best way of doing things for the multiperiod model, and the precision must be lost anyway. Particularly, the authors show that the use of the central limit theorem is not appropriate; errors are large. The precise recursive method is difficult to perform for a large portfolio. The authors propose the importance of the Monte Carlo sampling method instead of the crude one. Their estimations are based on some probabilistic inequalities such as a version of Chernoff's (saddle point), also analyzed by S. Asmussen [Stochastic simulation with a view toward stochastic processes, Univ. Aarhus, Aarhus, 1999; Zbl 0981.65013], and are related to the approximation from D. Blackwell and J. L. Hodges, Jr. [Ann. Math. Statist. 30 (1959), 1113–1120; MR0112197].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.