Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Closed k-stop distance in graphs

100%
EN
The Traveling Salesman Problem (TSP) is still one of the most researched topics in computational mathematics, and we introduce a variant of it, namely the study of the closed k-walks in graphs. We search for a shortest closed route visiting k cities in a non complete graph without weights. This motivates the following definition. Given a set of k distinct vertices 𝓢 = {x₁, x₂, ...,xₖ} in a simple graph G, the closed k-stop-distance of set 𝓢 is defined to be $dₖ(𝓢) = min_{Θ ∈ 𝓟(𝓢)} (d(Θ(x₁),Θ(x₂)) + d(Θ(x₂),Θ(x₃)) + ...+ d(Θ(xₖ),Θ(x₁)))$, where 𝓟(𝓢) is the set of all permutations from 𝓢 onto 𝓢. That is the same as saying that dₖ(𝓢) is the length of the shortest closed walk through the vertices {x₁, ...,xₖ}. Recall that the Steiner distance sd(𝓢) is the number of edges in a minimum connected subgraph containing all of the vertices of 𝓢. We note some relationships between Steiner distance and closed k-stop distance. The closed 2-stop distance is twice the ordinary distance between two vertices. We conjecture that radₖ(G) ≤ diamₖ(G) ≤ k/(k -1) radₖ(G) for any connected graph G for k ≤ 2. For k = 2, this formula reduces to the classical result rad(G) ≤ diam(G) ≤ 2rad(G). We prove the conjecture in the cases when k = 3 and k = 4 for any graph G and for k ≤ 3 when G is a tree. We consider the minimum number of vertices with each possible 3-eccentricity between rad₃(G) and diam₃(G). We also study the closed k-stop center and closed k-stop periphery of a graph, for k = 3.
2
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Domination in functigraphs

88%
EN
Let G₁ and G₂ be disjoint copies of a graph G, and let f:V(G₁) → V(G₂) be a function. Then a functigraph C(G,f) = (V,E) has the vertex set V = V(G₁) ∪ V(G₂) and the edge set E = E(G₁) ∪ E(G₂) ∪ {uv | u ∈ V(G₁), v ∈ V(G₂),v = f(u)}. A functigraph is a generalization of a permutation graph (also known as a generalized prism) in the sense of Chartrand and Harary. In this paper, we study domination in functigraphs. Let γ(G) denote the domination number of G. It is readily seen that γ(G) ≤ γ(C(G,f)) ≤ 2 γ(G). We investigate for graphs generally, and for cycles in great detail, the functions which achieve the upper and lower bounds, as well as the realization of the intermediate values.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.