Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We investigate sufficient conditions, and in case that D be an asymmetrical digraph a necessary and sufficient condition for a digraph to have the following property: "In any induced subdigraph H of D, every maximal independent set meets every non-augmentable path". Also we obtain a necessary and sufficient condition for any orientation of a graph G results a digraph with the above property. The property studied in this paper is an instance of the property of a conjecture of J.M. Laborde, Ch. Payan and N.H. Huang: "Every digraph contains an independent set which meets every longest directed path" (1982).
EN
A digraph D is said to satisfy the k-Meyniel's condition if each odd directed cycle of D has at least k diagonals. The study of the k-Meyniel's condition has been a source of many interesting problems, questions and results in the development of Kernel Theory. In this paper we present a method to construct a large variety of kernel-perfect (resp. critical kernel-imperfect) digraphs which satisfy the k-Meyniel's condition.
EN
In this paper, we prove the following sufficient condition for the existence of k-kernels in digraphs: Let D be a digraph whose asymmetrical part is strongly conneted and such that every directed triangle has at least two symmetrical arcs. If every directed cycle γ of D with l(γ) ≢ 0 (mod k), k ≥ 2 satisfies at least one of the following properties: (a) γ has two symmetrical arcs, (b) γ has four short chords. Then D has a k-kernel. This result generalizes some previous results on the existence of kernels and k-kernels in digraphs. In particular, it generalizes the following Theorem of M. Kwaśnik [5]: Let D be a strongly connected digraph, if every directed cycle of D has length ≡ 0 (mod k), k ≥ 2. Then D has a k-kernel.
4
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Kernels in edge coloured line digraph

64%
EN
We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the two following conditions (i) for every pair of different vertices u, v ∈ N there is no monochromatic directed path between them and (ii) for every vertex x ∈ V(D)-N there is a vertex y ∈ N such that there is an xy-monochromatic directed path. Let D be an m-coloured digraph and L(D) its line digraph. The inner m-coloration of L(D) is the edge coloration of L(D) defined as follows: If h is an arc of D of colour c, then any arc of the form (x,h) in L(D) also has colour c. In this paper it is proved that if D is an m-coloured digraph without monochromatic directed cycles, then the number of kernels by monochromatic paths in D is equal to the number of kernels by monochromatic paths in the inner edge coloration of L(D).
5
Content available remote

On the Existence of (k,l)-Kernels in Infinite Digraphs: A Survey

64%
EN
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N, u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k −1)-kernel. This work is a survey of results proving sufficient conditions for the existence of (k, l)-kernels in infinite digraphs. Despite all the previous work in this direction was done for (2, 1)-kernels, we present many original results concerning (k, l)-kernels for distinct values of k and l. The original results are sufficient conditions for the existence of (k, l)- kernels in diverse families of infinite digraphs. Among the families that we study are: transitive digraphs, quasi-transitive digraphs, right/left pretransitive digraphs, cyclically k-partite digraphs, κ-strong digraphs, k-transitive digraphs, k-quasi-transitive digraphs
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.