Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The asymptotic stability of one-dimensional linear Bresse systems under infinite memories was obtained by Guesmia and Kafini [10] (three infinite memories), Guesmia and Kirane [11] (two infinite memories), Guesmia [9] (one infinite memory acting on the longitudinal displacement) and De Lima Santos et al. [6] (one infinite memory acting on the shear angle displacement). When the kernel functions have an exponential decay at infinity, the obtained stability estimates in these papers lead to the exponential stability of the system if the speeds ofwave propagations are the same, and to the polynomial one with decay rate [...] otherwise. The subject of this paper is to study the case where only one infinite memory is considered and it is acting on the vertical displacement. As far as we know, this case has never studied before in the literature. We show that this case is deeply different from the previous ones cited above by proving that the exponential stability does not hold even if the speeds of wave propagations are the same and the kernel function has an exponential decay at infinity. Moreover, we prove that the system is still stable at least polynomially where the decay rate depends on the smoothness of the initial data. For classical solutions, this decay rate is arbitrarily close to [...] . The proof is based on a combination of the energy method and the frequency domain approach to overcome the new mathematical difficulties generated by our system.
2
Content available remote

On the nonlinear stabilization of the wave equation

100%
EN
We obtain a precise decay estimate of the energy of the solutions to the initial boundary value problem for the wave equation with nonlinear internal and boundary feedbacks. We show that a judicious choice of the feedbacks leads to fast energy decay.
3
Content available remote

Decay estimates of solutions of a nonlinearly damped semilinear wave equation

63%
EN
We consider an initial boundary value problem for the equation $u_{tt} - Δu - ∇ϕ·∇u + f(u) + g(u_{t}) = 0$. We first prove local and global existence results under suitable conditions on f and g. Then we show that weak solutions decay either algebraically or exponentially depending on the rate of growth of g. This result improves and includes earlier decay results established by the authors.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.