Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

Ograniczanie wyników

Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Nearstandardness on a finite set

100%
EN
CONTENTS Introduction.................................................................................................................5 0. Preliminary notes....................................................................................................7  0.1. Definitions...........................................................................................................7  0.2. ⟨nst⟩-condition....................................................................................................8  0.3. ⟨nst⟩-condition for linear operators.....................................................................9  0.4. Nearstandardness on ℬ(X;Y)............................................................................10  0.5. Strong and uniform nearstandardness.............................................................11 1. Standard filling.....................................................................................................13  1.1. Definition of a standard filling...........................................................................14  1.2. Charge spaces.................................................................................................15  1.3. Discrete interval...............................................................................................16  1.4. Exact inductors.................................................................................................18  1.5. Standard measure filling...................................................................................18  1.6. The embedding N → M.....................................................................................19 2. Standardness on $ℂ^𝕋$.......................................................................................20  2.1. The embedding $ℂ^𝕋 → L(T)$.........................................................................20  2.2. The inductor $Π:L(T) → ℂ^𝕋$...........................................................................21  2.3. Standard and nearstandard functions on $ℂ^𝕋$; standardized image.............23  2.4. Absolute continuity, integrability........................................................................23  2.5. Some "classical theorems"................................................................................25  2.6. Relation between the "discrete integral" and the ordinary one.........................26 3. The spaces ℍ and H............................................................................................26  3.1. Embedding and inductor...................................................................................27  3.2. Quasi-unity and the orthoprojector P................................................................28  3.3. Weak nearstandardness on ℍ.........................................................................30 4. Nearstandardness on ℬ(ℍ)..................................................................................31  4.1. The embedding Q and the inductor P...............................................................31  4.2. Exactness of P..................................................................................................31  4.3. Strong and uniform nearstandardness.............................................................32  4.4. Graph-nearstandardness.................................................................................34  4.5. ℬ₂-nearstandardness.......................................................................................35 5. Discrete Fourier transform...................................................................................39  5.1. The shift $U_θ$................................................................................................39  5.2. The operator $D_θ$.........................................................................................42  5.3. Discrete Riemann-Lebesgue lemma.................................................................44  5.4. A nearstandardness criterion...........................................................................46  5.5. Nearstandardness of the shift..........................................................................47  5.6. Nearstandardness of discrete differentiation....................................................49  5.7. Case a ~ +∞.....................................................................................................52 6. Application of equipment......................................................................................55  6.1. Induced equipment...........................................................................................56  6.2. H₋-nearstandardness.......................................................................................57  6.3. Example of equipment......................................................................................58  6.4. H₋-nearstandard operators..............................................................................59  6.5. H₋-nearstandardness of discrete differentiation...............................................61 References...............................................................................................................63
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.