Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Theory of space-time dissipative elasticity and scale effects

100%
EN
In this article a model of irreversible dynamic thermoelasticity of an ideal continuua is constructed from an elasticity theory of asymmetrical, transversely isotropic in time direction, dissipative defectless 4D-continuum. In the model the fourth component of the 4D-displacement vector is locally irregular time R. The kinematic model comprises 3D-tensor of distortion, 3Dvector of velocity, 3D-gradient vector of local irregular time and entropy in unified tensor object which is an asymmetrical 4D-tensor of distortion of second rank. Consequently, the force model comprises 3D-tensor of stress, 3D-vector of impulses, 3D-vector of heat flow and temperature in unified tensor object which is an asymmetrical 4D-stress tensor of second rank. Hooke’s law equations have been formulated which connect components of asymmetrical 4D-tensors of stress and distortion. Physical interpretations have been given to the tensors’ components of thermomechanical properties of formulated continuum. Therefore, the article formulate an irreversible dynamic thermoelasticity covariant model of ideal (defectless) continua in which basic kinematic and force variables are components of unified tensor objects and theory is represented by 4D-vector equation. Sedov’s equation has been derived and resulted into Euler’s equations, space projections of which determine motion equations, and time projection determines heat conductivity equation as well as the whole spectrum of the space-time boundary value problems. The proposed theory allows one to describe the scale effects in the thermal processes and opens prospects for studying the scale effects of the coupled dynamic thermoelasticity and its nanoscience applications. A temperature-scale refinement can also broaden the range of applicability of the law of heat conduction in solids to allow for design of small-sized components, devices and nano-systems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.