Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

The structure of Lindenstrauss-Pełczyński spaces

100%
EN
Lindenstrauss-Pełczyński (for short ℒ𝒫) spaces were introduced by these authors [Studia Math. 174 (2006)] as those Banach spaces X such that every operator from a subspace of c₀ into X can be extended to the whole c₀. Here we obtain the following structure theorem: a separable Banach space X is an ℒ𝒫-space if and only if every subspace of c₀ is placed in X in a unique position, up to automorphisms of X. This, in combination with a result of Kalton [New York J. Math. 13 (2007)], provides a negative answer to a problem posed by Lindenstrauss and Pełczyński [J. Funct. Anal. 8 (1971)]. We show that the class of ℒ𝒫-spaces does not have the 3-space property, which corrects a theorem in an earlier paper of the authors [Studia Math. 174 (2006)]. We then solve a problem in that paper showing that $ℒ_{∞}$ spaces not containing l₁ are not necessarily ℒ𝒫-spaces.
2
Content available remote

On Lindenstrauss-Pełczyński spaces

100%
EN
We consider some stability aspects of the classical problem of extension of C(K)-valued operators. We introduce the class ℒ𝒫 of Banach spaces of Lindenstrauss-Pełczyński type as those such that every operator from a subspace of c₀ into them can be extended to c₀. We show that all ℒ𝒫-spaces are of type $ℒ_{∞}$ but not conversely. Moreover, $ℒ_{∞}$-spaces will be characterized as those spaces E such that E-valued operators from w*(l₁,c₀)-closed subspaces of l₁ extend to l₁. Regarding examples we will show that every separable $ℒ_{∞}$-space is a quotient of two ℒ𝒫-spaces; also, $ℒ_{∞}$-spaces not containing c₀ are ℒ𝒫-spaces; the complemented subspaces of C(K) and the separably injective spaces are subclasses of the ℒ𝒫-spaces and we show that the former does not contain the latter. Regarding stability properties, we prove that quotients of an ℒ𝒫-space by a separably injective space and twisted sums of ℒ𝒫-spaces are ℒ𝒫-spaces.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.