Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Periodic coordination in hierarchical air defence systems

100%
EN
The subject of this work is the defence planning of a point target against an air attack. The defence system is decomposed into a number of sectors. A direct method of coordination is used at the upper level, while the sectors use a discrete-time event-based model and the description of uncertainty by multiple scenarios of an attack. The resulting problems are solved using linear programming. A comparison of two coordination strategies for realistic attack scenarios and an analysis of effectiveness are provided.
EN
The issue of energy-aware traffic engineering has become prominent in telecommunications industry in the last years. This paper presents a two-criteria network optimization problem, in which routing and bandwidth allocation are determined jointly, so as to minimize the amount of energy consumed by a telecommunication infrastructure and to satisfy given demands represented by a traffic matrix. A scalarization of the criteria is proposed and the choice of model parameters is discussed in detail. The model of power dissipation as a function of carried traffic in a typical software router is introduced. Then the problem is expressed in a form suitable for the mixed integer quadratic programming (MIQP) solver. The paper is concluded with a set of small, illustrative computational examples. Computed solutions are implemented in a testbed to validate the accuracy of energy consumption models and the correctness of the proposed traffic engineering algorithm.
EN
When there is a mismatch between the cardinality of a periodic task set and the priority levels supported by the underlying hardware systems, multiple tasks are grouped into one class so as to maintain a specific level of confidence in their accuracy. However, such a transformation is achieved at the expense of the loss of schedulability of the original task set. We further investigate the aforementioned problem and report the following contributions: (i) a novel technique for mapping unlimited priority tasks into a reduced number of classes that do not violate the schedulability of the original task set and (ii) an efficient feasibility test that eliminates insufficient points during the feasibility analysis. The theoretical correctness of both contributions is checked through formal verifications. Moreover, the experimental results reveal the superiority of our work over the existing feasibility tests by reducing the number of scheduling points that are needed otherwise.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.