Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Strong Cohomological Dimension

100%
EN
We characterize strong cohomological dimension of separable metric spaces in terms of extension of mappings. Using this characterization, we discuss the relation between strong cohomological dimension and (ordinal) cohomological dimension and give examples to clarify their gaps. We also show that $Ind_{G} X = dim_{G} X$ if X is a separable metric ANR and G is a countable Abelian group. Hence $dim_{ℤ} X = dim X$ for any separable metric ANR X.
2
Content available remote

Borsuk-Sieklucki theorem in cohomological dimension theory

71%
EN
The Borsuk-Sieklucki theorem says that for every uncountable family ${X_{α}}_{α∈A}$ of n-dimensional closed subsets of an n-dimensional ANR-compactum, there exist α ≠ β such that $dim (X_{α} ∩ X_{β}) = n$. In this paper we show a cohomological version of that theorem: Theorem. Suppose a compactum X is $clc^{n+1}_{ℤ}$, where n ≥ 1, and G is an Abelian group. Let ${X_{α}}_{α∈J}$ be an uncountable family of closed subsets of X. If $dim_{G}X = dim_{G}X_{α} = n$ for all α ∈ J, then $dim_{G}(X_{α}∩ X_{β}) = n$ for some α ≠ β. For G being a countable principal ideal domain the above result was proved by Choi and Kozlowski [C-K]. Independently, Dydak and Koyama [D-K] proved it for G being an arbitrary principal ideal domain and posed the question of validity of the Theorem for quasicyclic groups (see Problem 1 in [D-K]). As applications of the Theorem we investigate equality of cohomological dimension and strong cohomological dimension, and give a characterization of cohomological dimension in terms of a special base.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.