Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We deal with monotone iterative method for the Darboux problem for the system of hyperbolic partial functional-differential equations \[ \begin{cases} \frac{\partial^2 u}{\partial x\partial y} (x,y) = f(x,y,u_{(x,y)}, u_{(x,y)}, \text{a.e. in}\ [0,1]\times [0,b]\\ u(x,y) = \psi (x,y), \text{on}\ [-a_0,a]\times [-b_0,b] \setminus (0,a] \times (0,b], \end{cases} \] where the function \(u_{(x,y)}\colon [-a_0,0]\times [-b_0,0] \to \mathbb{R}^k\) is defined by \(u_{(x,y)} (s, t) = u(s + x, t + y)\) for \((s, t)\in [-a_0 , 0] \times [-b_0 , 0]\).
EN
We consider the following Darboux problem for the functional differential equation $∂²u/∂x∂y(x,y) = f(x,y,u_{(x,y)},∂u/∂x(x,y),∂u/∂y(x,y))$ a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b]\(0,a]×(0,b], where the function $u_{(x,y)}:[-a₀,0]×[-b₀,0] → ℝ^{k}$ is defined by $u_{(x,y)}(s,t) = u(s+x,t+y)$ for (s,t) ∈ [-a₀,0]×[-b₀,0]. We prove a theorem on existence of the Carathéodory solutions of the above problem.
EN
We consider the Darboux problem for a functional differential equation: $(∂²u)/(∂x∂y) (x,y) = f(x,y,u_{(x,y)},u(x,y),∂u/∂x (x,y),∂u/∂y (x,y))$ a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b]∖(0,a]×(0,b], where the function $u_{(x,y)}:[-a₀,0]×[-b₀,0] → ℝ^{k}$ is defined by $u_{(x,y)}(s,t) = u({s+x},{t+y})$ for (s,t) ∈ [-a₀,0]×[-b₀,0]. We give a few theorems about weak and strong inequalities for this problem. We also discuss the case where the right-hand side of the differential equation is linear.
EN
We consider a second order semilinear functional evolution equation with infinite delay in a Banach space. We prove the existence of mild solutions for this equation using the measure of noncompactness technique and the Schauder fixed point theorem.
5
Content available remote

On the Cauchy problem for hyperbolic functional-differential equations

64%
EN
We consider the Cauchy problem for a nonlocal wave equation in one dimension. We study the existence of solutions by means of bicharacteristics. The existence and uniqueness is obtained in $W^{1,∞}_{loc}$ topology. The existence theorem is proved in a subset generated by certain continuity conditions for the derivatives.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.