Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

About uniquely colorable mixed hypertrees

100%
EN
A mixed hypergraph is a triple 𝓗 = (X,𝓒,𝓓) where X is the vertex set and each of 𝓒, 𝓓 is a family of subsets of X, the 𝓒-edges and 𝓓-edges, respectively. A k-coloring of 𝓗 is a mapping c: X → [k] such that each 𝓒-edge has two vertices with the same color and each 𝓓-edge has two vertices with distinct colors. 𝓗 = (X,𝓒,𝓓) is called a mixed hypertree if there exists a tree T = (X,𝓔) such that every 𝓓-edge and every 𝓒-edge induces a subtree of T. A mixed hypergraph 𝓗 is called uniquely colorable if it has precisely one coloring apart from permutations of colors. We give the characterization of uniquely colorable mixed hypertrees.
2
81%
EN
A color-bounded hypergraph is a hypergraph (set system) with vertex set X and edge set 𝓔 = {E₁,...,Eₘ}, together with integers $s_i$ and $t_i$ satisfying $1 ≤ s_i ≤ t_i ≤ |E_i|$ for each i = 1,...,m. A vertex coloring φ is proper if for every i, the number of colors occurring in edge $E_i$ satisfies $s_i ≤ |φ(E_i)| ≤ t_i$. The hypergraph ℋ is colorable if it admits at least one proper coloring. We consider hypergraphs ℋ over a "host graph", that means a graph G on the same vertex set X as ℋ, such that each $E_i$ induces a connected subgraph in G. In the current setting we fix a graph or multigraph G₀, and assume that the host graph G is obtained by some sequence of edge subdivisions, starting from G₀. The colorability problem is known to be NP-complete in general, and also when restricted to 3-uniform "mixed hypergraphs", i.e., color-bounded hypergraphs in which $|E_i| = 3$ and $1 ≤ s_i ≤ 2 ≤ t_i ≤ 3$ holds for all i ≤ m. We prove that for every fixed graph G₀ and natural number r, colorability is decidable in polynomial time over the class of r-uniform hypergraphs (and more generally of hypergraphs with $|E_i| ≤ r$ for all 1 ≤ i ≤ m) having a host graph G obtained from G₀ by edge subdivisions. Stronger bounds are derived for hypergraphs for which G₀ is a tree.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.