Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Patterns with several multiple eigenvalues

100%
EN
Identified are certain special periodic diagonal matrices that have a predictable number of paired eigenvalues. Since certain symmetric Toeplitz matrices are special cases, those that have several multiple 5 eigenvalues are also investigated further. This work generalizes earlier work on response matrices from circularly symmetric models.
2
Content available remote

Symmetric Jacobians

100%
Open Mathematics
|
2014
|
tom 12
|
nr 6
787-800
EN
This article is about polynomial maps with a certain symmetry and/or antisymmetry in their Jacobians, and whether the Jacobian Conjecture is satisfied for such maps, or whether it is sufficient to prove the Jacobian Conjecture for such maps. For instance, we show that it suffices to prove the Jacobian conjecture for polynomial maps x + H over ℂ such that satisfies all symmetries of the square, where H is homogeneous of arbitrary degree d ≥ 3.
3
Content available remote

Equalities for orthogonal projectors and their operations

100%
Open Mathematics
|
2010
|
tom 8
|
nr 5
855-870
EN
A complex square matrix A is called an orthogonal projector if A 2 = A = A*, where A* denotes the conjugate transpose of A. In this paper, we give a comprehensive investigation to matrix expressions consisting of orthogonal projectors and their properties through ranks of matrices. We first collect some well-known rank formulas for orthogonal projectors and their operations, and then establish various new rank formulas for matrix expressions composed by orthogonal projectors. As applications, we derive necessary and sufficient conditions for various equalities for orthogonal projectors and their operations to hold.
4
Content available remote

Equality in Wielandt’s eigenvalue inequality

100%
EN
In this paper we give necessary and sufficient conditions for the equality case in Wielandt’s eigenvalue inequality.
5
Content available remote

Inertias and ranks of some Hermitian matrix functions with applications

81%
EN
Let S be a given set consisting of some Hermitian matrices with the same size. We say that a matrix A ∈ S is maximal if A − W is positive semidefinite for every matrix W ∈ S. In this paper, we consider the maximal and minimal inertias and ranks of the Hermitian matrix function f(X,Y) = P − QXQ* − TYT*, where * means the conjugate and transpose of a matrix, P = P*, Q, T are known matrices and for X and Y Hermitian solutions to the consistent matrix equations AX =B and YC = D respectively. As applications, we derive the necessary and sufficient conditions for the existence of maximal matrices of $$H = \{ f(X,Y) = P - QXQ* - TYT* : AX = B,YC = D,X = X*, Y = Y*\} .$$ The corresponding expressions of the maximal matrices of H are presented when the existence conditions are met. In this case, we further prove the matrix function f(X,Y)is invariant under changing the pair (X,Y). Moreover, we establish necessary and sufficient conditions for the system of matrix equations $$AX = B, YC = D, QXQ* + TYT* = P$$ to have a Hermitian solution and the system of matrix equations $$AX = C, BXB* = D$$ to have a bisymmetric solution. The explicit expressions of such solutions to the systems mentioned above are also provided. In addition, we discuss the range of inertias of the matrix functions P ± QXQ* ± TYT* where X and Y are a nonnegative definite pair of solutions to some consistent matrix equations. The findings of this pape extend some known results in the literature.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.