Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Ecological modeling and Lagrangian approach

100%
EN
A mathematical model is proposed for a quantitative estimation of the damage to biological resources resulting from a pollutant discharge into an aqueous environment. On the basis of the Lagrangian description of fluid motion a set of hydrophysical parameters is introduced with help of which hydrobiologists can estimate the damage. The computation of parameters introduced is illustrated by the example of a model problem of a pollutant spreading in a canal. For the discretization of the problem a deformable Lagrangian grid is used. A special grid reconstruction procedure with the subsequent interpolation of the parameters computed is proposed, which ensures computational stability and preserves the values of the most important hydrophysical parameters. Numerical results are presented.
EN
Zernike polynomials have been widely used in the description and shape retrieval of 3D objects. These orthonormal polynomials allow for efficient description and reconstruction of objects that can be scaled to fit within the unit ball. However, maps defined within box-shaped regions ¶ for example, rectangular prisms or cubes ¶ are not well suited to representation by Zernike polynomials, because these functions are not orthogonal over such regions. In particular, the representations require many expansion terms to describe object features along the edges and corners of the region. We overcome this problem by applying a Gram-Schmidt process to re-orthogonalize the Zernike polynomials so that they recover the orthonormality property over a specified box-shaped domain. We compare the shape retrieval performance of these new polynomial bases to that of the classical Zernike unit-ball polynomials.
3
Content available remote

Fully implicit ADI schemes for solving the nonlinear Poisson-Boltzmann equation

52%
EN
The Poisson-Boltzmann (PB) model is an effective approach for the electrostatics analysis of solvated biomolecules. The nonlinearity associated with the PB equation is critical when the underlying electrostatic potential is strong, but is extremely difficult to solve numerically. In this paper, we construct two operator splitting alternating direction implicit (ADI) schemes to efficiently and stably solve the nonlinear PB equation in a pseudo-transient continuation approach. The operator splitting framework enables an analytical integration of the nonlinear term that suppresses the nonlinear instability. A standard finite difference scheme weighted by piecewise dielectric constants varying across the molecular surface is employed to discretize the nonhomogeneous diffusion term of the nonlinear PB equation, and yields tridiagonal matrices in the Douglas and Douglas-Rachford type ADI schemes. The proposed time splitting ADI schemes are different from all existing pseudo-transient continuation approaches for solving the classical nonlinear PB equation in the sense that they are fully implicit. In a numerical benchmark example, the steady state solutions of the fully-implicit ADI schemes based on different initial values all converge to the time invariant analytical solution, while those of the explicit Euler and semi-implicit ADI schemes blow up when the magnitude of the initial solution is large. For the solvation analysis in applications to real biomolecules with various sizes, the time stability of the proposed ADI schemes can be maintained even using very large time increments, demonstrating the efficiency and stability of the present methods for biomolecular simulation.
EN
The Poisson-Boltzmann equation (PBE) is one important implicit solvent continuum model for calculating electrostatics of protein in ionic solvent. Several numerical algorithms and program packages have been developed but verification and comparison between them remains an interesting topic. In this paper, a PBE test model is presented for a protein in a spherical solute region, along with its analytical solution. It is then used to verify a PBE finite element solver and applied to a numerical comparison study between a finite element solver and a finite difference solver. Such a study demonstrates the importance of retaining the interface conditions in the development of PBE solvers.
5
Content available remote

Progress in developing Poisson-Boltzmann equation solvers

42%
EN
This review outlines the recent progress made in developing more accurate and efficient solutions to model electrostatics in systems comprised of bio-macromolecules and nanoobjects, the last one referring to objects that do not have biological function themselves but nowadays are frequently used in biophysical and medical approaches in conjunction with bio-macromolecules. The problem of modeling macromolecular electrostatics is reviewed from two different angles: as a mathematical task provided the specific definition of the system to be modeled and as a physical problem aiming to better capture the phenomena occurring in the real experiments. In addition, specific attention is paid to methods to extend the capabilities of the existing solvers to model large systems toward applications of calculations of the electrostatic potential and energies in molecular motors, mitochondria complex, photosynthetic machinery and systems involving large nanoobjects.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.