Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
In the present paper our aim is to establish convergence and Voronovskaja-type theorems for first derivatives of generalized Baskakov operators for functions of one and two variables in exponential and polynomial weight spaces.
2
Content available remote

A novel recursive method to reconstruct multivariate functions on the unit cube

100%
Open Mathematics
|
2017
|
tom 15
|
nr 1
1568-1577
EN
Due to discontinuity on the boundary, traditional Fourier approximation does not work efficiently for d−variate functions on [0, 1]d. In this paper, we will give a recursive method to reconstruct/approximate functions on [0, 1]d well. The main process is as follows: We reconstruct a d−variate function by using all of its (d−1)–variate boundary functions and few d–variate Fourier coefficients. We reconstruct each (d−1)–variate boundary function given in the preceding reconstruction by using all of its (d−2)–variate boundary functions and few (d−1)–variate Fourier coefficients. Continuing this procedure, we finally reconstruct each univariate boundary function in the preceding reconstruction by using values of the function at two ends and few univariate Fourier coefficients. Our recursive method can reconstruct multivariate functions on the unit cube with much smaller error than traditional Fourier methods.
3
Content available remote

A gradient-projective basis of compactly supported wavelets in dimension n > 1

100%
Open Mathematics
|
2013
|
tom 11
|
nr 7
1317-1333
EN
A given set W = {W X } of n-variable class C 1 functions is a gradient-projective basis if for every tempered distribution f whose gradient is square-integrable, the sum $\sum\limits_\chi {(\int_{\mathbb{R}^n } {\nabla f \cdot } \nabla W_\chi ^* )} W_\chi $ converges to f with respect to the norm \(\left\| {\nabla ( \cdot )} \right\|_{L^2 (\mathbb{R}^n )} \) . The set is not necessarily an orthonormal set; the orthonormal expansion formula is just an element of the convex set of valid expansions of the given function f over W. We construct a gradient-projective basis W = {W x } of compactly supported class C 2−ɛ functions on ℝn such that [...] where X has the structure \(\chi = (\tilde \chi ,\nu )\) , ν ∈ ℤ. W is a wavelet set in the sense that the functions indexed by \(\tilde \chi \) are generated by an averaging of lattice translations with wave propagations, and there are two additional discrete parameters associated with the latter. These functions indexed by \(\tilde \chi \) are the unit-scale wavelets. The support volumes of our unit-scale wavelets are not uniformly bounded, however. While the practical value of this construction is doubtful, our motivation is theoretical. The point is that a gradient-orthonormal basis of compactly supported wavelets has never been constructed in dimension n > 1. (In one dimension the construction of such a basis is easy - just anti-differentiate the Haar functions.)
4
Content available remote

Korovkin-type convergence results for non-positive operators

64%
Open Mathematics
|
2010
|
tom 8
|
nr 5
890-907
EN
Korovkin-type approximation theory usually deals with convergence analysis for sequences of positive operators. In this work we present qualitative Korovkin-type convergence results for a class of sequences of non-positive operators, more precisely regular operators with vanishing negative parts under a limiting process. Sequences of that type are called sequences of almost positive linear operators and have not been studied before in the context of Korovkin-type approximation theory. As an example we show that operators related to the multivariate scattered data interpolation technique moving least squares interpolation originally due to Lancaster and Šalkauskas [Surfaces generated by moving least squares methods, Math. Comp., 1981, 37, 141–158] give rise to such sequences. This work also generalizes Korovkin-type results regarding Shepard interpolation [Korovkin-type convergence results for multivariate Shepard formulae, Rev. Anal. Numér. Théor. Approx., 2009, 38, 170–176] due to the author. Moreover, this work establishes connections and differences between the concepts of sequences of almost positive linear operators and sequences of quasi-positive or convexity-monotone linear operators introduced and studied by Campiti in [Convexity-monotone operators in Korovkin theory, Rend. Circ. Mat. Palermo (2) Suppl., 1993, 33, 229–238].
5
64%
EN
Given information about a harmonic function in two variables, consisting of a finite number of values of its Radon projections, i.e., integrals along some chords of the unit circle, we study the problem of interpolating these data by a harmonic polynomial. With the help of symbolic summation techniques we show that this interpolation problem has a unique solution in the case when the chords form a regular polygon. Numerical experiments for this and more general cases are presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.