Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
A k-colouring of a graph G is a mapping c from the set of vertices of G to the set {1, . . . , k} of colours such that adjacent vertices receive distinct colours. Such a k-colouring is called acyclic, if for every two distinct colours i and j, the subgraph induced by all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, every cycle in G has at least three distinct colours. Acyclic colourings were introduced by Gr¨unbaum in 1973, and since then have been widely studied. In particular, the problem of acyclic colourings of graphs with bounded maximum degree has been investigated. In 2011, Kostochka and Stocker showed that any graph with maximum degree 5 can be acyclically coloured with at most 7 colours. The question, whether this bound is achieved, remains open. In this note we prove that any graph with maximum degree 5 and maximum average degree at most 4 admits an acyclic 6-colouring. We also provide examples of graphs with these properties.
2
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

On partitions of hereditary properties of graphs

63%
EN
In this paper a concept 𝓠-Ramsey Class of graphs is introduced, where 𝓠 is a class of bipartite graphs. It is a generalization of well-known concept of Ramsey Class of graphs. Some 𝓠-Ramsey Classes of graphs are presented (Theorem 1 and 2). We proved that 𝓣₂, the class of all outerplanar graphs, is not 𝓓₁-Ramsey Class (Theorem 3). This results leads us to the concept of acyclic reducible bounds for a hereditary property 𝓟 . For 𝓣₂ we found two bounds (Theorem 4). An improvement, in some sense, of that in Theorem is given.
EN
The hereditary property of hypergraphs generated by the cost colouring notion is considered in the paper. First, we characterize all maximal graphs with respect to this property. Second, we give the generating function for the sequence describing the number of such graphs with the numbered order. Finally, we construct a maximal hypergraph for each admissible number of vertices showing some density property. All results can be applied to the problem of information storage.
4
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Acyclic reducible bounds for outerplanar graphs

51%
EN
For a given graph G and a sequence 𝓟₁, 𝓟₂,..., 𝓟ₙ of additive hereditary classes of graphs we define an acyclic (𝓟₁, 𝓟₂,...,Pₙ)-colouring of G as a partition (V₁, V₂,...,Vₙ) of the set V(G) of vertices which satisfies the following two conditions: 1. $G[V_i] ∈ 𝓟_i$ for i = 1,...,n, 2. for every pair i,j of distinct colours the subgraph induced in G by the set of edges uv such that $u ∈ V_i$ and $v ∈ V_j$ is acyclic. A class R = 𝓟₁ ⊙ 𝓟₂ ⊙ ... ⊙ 𝓟ₙ is defined as the set of the graphs having an acyclic (𝓟₁, 𝓟₂,...,Pₙ)-colouring. If 𝓟 ⊆ R, then we say that R is an acyclic reducible bound for 𝓟. In this paper we present acyclic reducible bounds for the class of outerplanar graphs.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.