Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

A Maximum Resonant Set of Polyomino Graphs

100%
EN
A polyomino graph P is a connected finite subgraph of the infinite plane grid such that each finite face is surrounded by a regular square of side length one and each edge belongs to at least one square. A dimer covering of P corresponds to a perfect matching. Different dimer coverings can interact via an alternating cycle (or square) with respect to them. A set of disjoint squares of P is a resonant set if P has a perfect matching M so that each one of those squares is M-alternating. In this paper, we show that if K is a maximum resonant set of P, then P − K has a unique perfect matching. We further prove that the maximum forcing number of a polyomino graph is equal to the cardinality of a maximum resonant set. This confirms a conjecture of Xu et al. [26]. We also show that if K is a maximal alternating set of P, then P − K has a unique perfect matching.
2
Content available remote

Per-Spectral Characterizations Of Some Bipartite Graphs

100%
EN
A graph is said to be characterized by its permanental spectrum if there is no other non-isomorphic graph with the same permanental spectrum. In this paper, we investigate when a complete bipartite graph Kp,p with some edges deleted is determined by its permanental spectrum. We first prove that a graph obtained from Kp,p by deleting all edges of a star K1,l, provided l < p, is determined by its permanental spectrum. Furthermore, we show that all graphs with a perfect matching obtained from Kp,p by removing five or fewer edges are determined by their permanental spectra.
3
Content available remote

Sharp Upper Bounds on the Clar Number of Fullerene Graphs

100%
EN
The Clar number of a fullerene graph with n vertices is bounded above by ⌊n/6⌋ − 2 and this bound has been improved to ⌊n/6⌋ − 3 when n is congruent to 2 modulo 6. We can construct at least one fullerene graph attaining the upper bounds for every even number of vertices n ≥ 20 except n = 22 and n = 30.
4
Content available remote

A Note on the Permanental Roots of Bipartite Graphs

81%
EN
It is well-known that any graph has all real eigenvalues and a graph is bipartite if and only if its spectrum is symmetric with respect to the origin. We are interested in finding whether the permanental roots of a bipartite graph G have symmetric property as the spectrum of G. In this note, we show that the permanental roots of bipartite graphs are symmetric with respect to the real and imaginary axes. Furthermore, we prove that any graph has no negative real permanental root, and any graph containing at least one edge has complex permanental roots.
5
Content available remote

Extremal Matching Energy of Complements of Trees

81%
EN
Gutman and Wagner proposed the concept of the matching energy which is defined as the sum of the absolute values of the zeros of the matching polynomial of a graph. And they pointed out that the chemical applications of matching energy go back to the 1970s. Let T be a tree with n vertices. In this paper, we characterize the trees whose complements have the maximal, second-maximal and minimal matching energy. Furthermore, we determine the trees with edge-independence number p whose complements have the minimum matching energy for p = 1, 2, . . . , [n/2]. When we restrict our consideration to all trees with a perfect matching, we determine the trees whose complements have the second-maximal matching energy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.