Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

On some problems involving Hardy’s function

100%
Open Mathematics
|
2010
|
tom 8
|
nr 6
1029-1040
EN
Some problems involving the classical Hardy function $$ Z\left( t \right) = \zeta \left( {\frac{1} {2} + it} \right)\left( {\chi \left( {\frac{1} {2} + it} \right)} \right)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} , \zeta \left( s \right) = \chi \left( s \right) \zeta \left( {1 - s} \right) $$, are discussed. In particular we discuss the odd moments of Z(t) and the distribution of its positive and negative values.
2
Content available remote

Upper bounds for the moments of derivatives of Dirichlet L-functions

100%
Open Mathematics
|
2014
|
tom 12
|
nr 6
848-860
EN
In this paper, we give certain upper bounds for the 2k-th moments, k ≥ 1/2, of derivatives of Dirichlet L-functions at s = 1/2 under the assumption of the Generalized Riemann Hypothesis.
3
Content available remote

Basel Problem – Preliminaries

81%
EN
In the article we formalize in the Mizar system [4] preliminary facts needed to prove the Basel problem [7, 1]. Facts that are independent from the notion of structure are included here.
4
Content available remote

Basel Problem

81%
EN
A rigorous elementary proof of the Basel problem [6, 1] ∑n=1∞1n2=π26 $$\sum\nolimits_{n = 1}^\infty {{1 \over {n^2 }} = {{\pi ^2 } \over 6}} $$ is formalized in the Mizar system [3]. This theorem is item #14 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.
EN
We prove an explicit formula of Atkinson type for the error term in the asymptotic formula for the mean square of the product of the Riemann zeta-function and a Dirichlet polynomial. To deal with the case when coefficients of the Dirichlet polynomial are complex, we apply the idea of the first author in his study on mean values of Dirichlet L-functions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.