Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Our main purpose is to establish the existence of weak solutions of second order quasilinear elliptic systems ⎧ $-Δ_pu + |u|^{p-2}u = f_{1λ₁}(x) |u|^{q-2}u + 2α/(α+β) g_μ|u|^{α-2} u|v|^β$, x ∈ Ω, ⎨ $-Δ_pv + |v|^{p-2}v = f_{2λ₂}(x) |v|^{q-2}v + 2β/(α+β) g_μ|u|^α|v|^{β-2}v$, x ∈ Ω, ⎩ u = v = 0, x∈ ∂Ω, where 1 < q < p < N and $Ω ⊂ ℝ^N$ is an open bounded smooth domain. Here λ₁, λ₂, μ ≥ 0 and $f_{iλ_i}(x) = λ_if_{i+}(x) + f_{i-}(x)$ (i = 1,2) are sign-changing functions, where $f_{i±}(x) = max{±f_i(x),0}$, $g_μ(x) = a(x) + μb(x)$, and $Δ_p u = div(|∇u|^{p-2}∇u)$ denotes the p-Laplace operator. We use variational methods.
EN
Our main purpose is to establish the existence of a positive solution of the system ⎧$-∆_{p(x)}u = F(x,u,v)$, x ∈ Ω, ⎨$-∆_{q(x)}v = H(x,u,v)$, x ∈ Ω, ⎩u = v = 0, x ∈ ∂Ω, where $Ω ⊂ ℝ^{N}$ is a bounded domain with C² boundary, $F(x,u,v) = λ^{p(x)}[g(x)a(u) + f(v)]$, $H(x,u,v) = λ^{q(x})[g(x)b(v) + h(u)]$, λ > 0 is a parameter, p(x),q(x) are functions which satisfy some conditions, and $-∆_{p(x)}u = -div(|∇u|^{p(x)-2}∇u)$ is called the p(x)-Laplacian. We give existence results and consider the asymptotic behavior of solutions near the boundary. We do not assume any symmetry conditions on the system.
EN
The existence of at least three weak solutions is established for a class of quasilinear elliptic equations involving the p(x)-biharmonic operator with Navier boundary value conditions. The proof is mainly based on a three critical points theorem due to B. Ricceri [Nonlinear Anal. 70 (2009), 3084-3089].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.